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ABSTRACT

A method is introduced for directly measuring convective entrainment and detrainment in a cloud-

resolving simulation. This technique is used to quantify the errors in the entrainment and detrainment esti-

mates obtained using the standard bulk-plume method. The bulk-plume method diagnoses these rates from

the convective flux of some conserved tracer, such as total water in nonprecipitating convection. By not

accounting for the variability of this tracer in clouds and in the environment, it is argued that the bulk-plume

equations systematically underestimate entrainment. Using tracers with different vertical profiles, it is also

shown that the bulk-plume estimates are tracer dependent and, in some cases, unphysical. The new direct-

measurement technique diagnoses entrainment and detrainment at the gridcell level without any recourse to

conserved tracers. Using this method in large-eddy simulations of shallow and deep convection, it is found that

the bulk-plume method underestimates entrainment by roughly a factor of 2. The directly measured en-

trainment rates are then compared to cloud height and cloud buoyancy. Contrary to existing theories, frac-

tional entrainment is not found to scale like the inverse of height, the cloud buoyancy, or the gradient of cloud

buoyancy. On the other hand, fractional detrainment is found to scale linearly with cloud buoyancy. Finally,

direct measurement is used to diagnose the spatial distribution of entrainment and detrainment during the

evolution of an individual deep cumulonimbus.

1. Introduction

Since the 1970s, bulk-plume equations have been used

to diagnose convective entrainment and detrainment

rates from observations of the large-scale budgets of deep

and shallow convection (Yanai et al. 1973; Esbensen

1978). More recently, bulk-plume equations have been

used to diagnose the fractional rates of entrainment �

and detrainment d from large-eddy simulations (LES)

of shallow convection (Siebesma and Cuijpers 1995;

Siebesma et al. 2003). But the bulk-plume model in-

vokes two approximations that may not be valid. First, it

is assumed that the properties of the detrained air are

the same as the average properties in the plume. Second,

the properties of entrained air are assumed to be the

same as the average properties of environmental air.

Since both the plume and the environment are repre-

sented by their bulk properties in this approach, the

term ‘‘bulk-plume’’ is a bit of a misnomer, but it is

certainly less cumbersome than ‘‘bulk-plume-and-

bulk-environment.’’ Therefore, we will refer to the

fractional entrainment and detrainment rates ob-

tained from these approximations as the bulk-plume �

and d.

The bulk-plume � and d are diagnosed using the bud-

gets for the convective fluxes of two quantities: dry air and

some conserved tracer. In shallow, nonprecipitating con-

vection, there are two different variables that have been

used for that conserved tracer: total water qt and liquid-

water potential temperature ul. It has been argued that

the accuracy of the bulk-plume � and d can be gauged

by calculating � and d twice—once with qt and once

with ul—and then comparing the two sets of estimates

(Siebesma 1996). Indeed, it is found that the two sets of

estimates agree (Siebesma and Cuijpers 1995). But qt and

ul are very highly anticorrelated both within clouds (see

Fig. 2 of Romps and Kuang 2010b) and in the environ-

ment (see Fig. 1 of Siebesma et al. 2003), so using ul is

almost identical to using 2qt. This means that the ac-

curacy of the bulk-plume � and d has not yet been

independently tested.

There are many reasons why it is important to check

the validity of the bulk-plume � and d. For example, if
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these values are dependent on the tracer distribution,

then the bulk-plume � and d obtained using one tracer

will give the wrong answer when used to predict the

transport of a tracer with a different vertical distribu-

tion. Or, if we take the bulk-plume � and d at face value,

when they are actually too low, then we may under-

estimate the sensitivity of convection to changes in free-

tropospheric humidity. Other problems will arise if we

try to use the bulk-plume � and d in a convective pa-

rameterization that does not use the bulk-plume ap-

proximations, such as a buoyancy-sorting scheme (Kain

and Fritsch 1990) or a stochastic parcel model (Romps

and Kuang 2010b). Even using the bulk-plume � and d in

a bulk-plume model may lead to an incorrect estimate of

the processing of trace chemicals by aqueous reactions.

Finally, and perhaps most importantly, we may miss an

opportunity to learn about the true entrainment and

detrainment rates, which may be more fundamental

than the effective rates estimated by the bulk-plume

equations.

This paper has two main objectives: 1) to assess the

validity of the bulk-plume entrainment and detrainment

rates and 2) to measure entrainment and detrainment

directly. Section 2 reviews the standard bulk-plume

method and, in so doing, presents an extension of the

method to deep, precipitating convection. In that sec-

tion, it is argued from first principles that the bulk-plume

� and d systematically underestimate the true � and d.

Section 3 describes the large-eddy simulations of shal-

low and deep convection that are used in this study. In

section 4, those simulations are used to perform sanity

tests on the bulk-plume method, which performs poorly.

To remedy this situation, a new method is introduced

in section 5 that allows for the direct measurement of

entrainment and detrainment at the gridcell level. In

section 6, the directly measured entrainment and de-

trainment rates are subjected to sanity tests, which yield

positive results. The direct-measurement and bulk-plume

methods are compared quantitatively in section 7, con-

firming a large underestimation from the bulk-plume

method. Section 8 explores the implications of the new

results for popular models of entrainment and detrain-

ment, such as � ; 1/z and � ; db/dz, where b is the cloud

buoyancy. Since direct measurement allows entrain-

ment and detrainment to be viewed as functions of space

and time, section 9 presents the distributions of entrain-

ment and detrainment during the development of an in-

dividual deep cumulonimbus. Section 10 summarizes the

findings.

2. Bulk-plume method—Theory

Before we define entrainment, we must answer the

question ‘‘Entrainment into what?’’ In particular, we must

define some criteria for dividing the atmosphere into

two categories between which mass is exchanged. Re-

ferring to the two categories as ‘‘active’’ and ‘‘inactive,’’

we say that a Lagrangian parcel ‘‘entrains’’ when it flips

from the inactive category to the active category. Like-

wise, a parcel of air ‘‘detrains’’ when it flips from active

to inactive. To maintain full generality in the equations

that follow, let us define an ‘‘activity operator’’A that is

equal to one at the location of active air and zero at the

location of inactive air. Later, we will choose to define

active air as that which has a condensate mixing ratio

and a vertical velocity above some thresholds. In that

case, A would take the form

A(~x, t) [
1, for q

c
(~x, t) $ q

threshold
and w(~x, t) $ w

threshold
,

0, for q
c
(~x, t) , q

threshold
or w(~x, t) , w

threshold
,

�

where qc is the mixing ratio of condensates, and w is the

vertical velocity. Denoting the horizontal average by

angled brackets, hAi is the fractional area covered by

active air as a function of height, which is often denoted

by s. We define the entrainment rate e(~x, t) as the local

rate at which air flips from inactive to active. This

quantity has units of kg m23 s21. Similarly, we define the

detrainment rate d(~x, t) as the local rate at which air flips

from active to inactive. By definition, e and d are non-

negative quantities and ed is identically zero, since no

point can be simultaneously entraining and detraining.

The bulk-plume method for diagnosing e and d relies

on the continuity equations for three densities: dry air r,

active dry airAr, and a tracer fr, where f is the mixing

ratio. Since dry air is conserved, it has no sources or

sinks. For active air, the sources and sinks are, by defi-

nition, entrainment and detrainment. For the f tracer,

we will only require that its sources and sinks Sf be zero

where A 5 1. For example, in nonprecipitating con-

vection, we can set f equal to the total-water mixing

ratio qt. More generally, we can use any artificial tracer

whose sources and sinks are restricted to inactive air.

This will give us the freedom to specify the horizontally

averaged vertical profile of such a tracer.

Keeping the f tracer fully general for the time being,

the three continuity equations are
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›

›t
r 1~$ � (r~u) 5 0, (1)

›

›t
(Ar) 1~$ � (Ar~u) 5 e� d, and (2)

›

›t
(fr) 1~$ � (fr~u ) 5 S

f
. (3)

Using Eq. (1) to pull r and ~u outside the derivatives in

Eq. (3) and then multiplying the resulting equation byA,

we get

Ar
›

›t
f 1Ar~u �~$f 5 0.

Here, we have used the condition that ASf 5 0. Finally,

using Eq. (2) to pullA, r, and~u inside the derivatives, we

are left with the continuity equation for active f tracer,

›

›t
(frA) 1~$ � (fr~uA) 5 fe� fd. (4)

When Eqs. (2) and (4) are averaged horizontally, they

yield

›

›t
hrAi1 ›

›z
hrwAi5 hei � hdi, and

›

›t
hfrAi1 ›

›z
hfrwAi5 hfei � hfdi.

Here, we have assumed that the horizontal average is

performed over an area that is either doubly periodic or

has u 5 y 5 0 m s21 at the lateral boundaries. Finally, by

defining fe and fd as the average f of entraining and

detraining parcels

f
e
[
hfei
hei , and (5)

f
d

[
hfdi
hdi , (6)

these equations may be written as

›

›t
hrAi1 ›

›z
hrwAi5 hei � hdi, and (7)

›

›t
hfrAi1 ›

›z
hfrwAi5 f

e
hei � f

d
hdi . (8)

Note that Eqs. (7) and (8) are exact; no approximations

have been made.

Ultimately, what we want to diagnose from these

equations are the horizontally averaged rates of entrain-

ment hei and detrainment hdi. In a cloud-resolving sim-

ulation, only the terms on the left-hand side of Eqs. (7)

and (8) are easily measured. Therefore, we have only two

equations but four unknowns: hei, hdi, fe, and fd. To

solve this problem, the bulk-plume method approximates

the average f of entraining air, fe, as equal to the average

f of inactive air and approximates the average f of de-

training air, fd, as equal to the mass-flux-weighted aver-

age of active air:

f
e
’

bulk�plume hfr(1�A)i
hr(1�A)i , and (9)

f
d
’

bulk�plume hfrwAi
hrwAi . (10)

Substituting (9) and (10) into (7) and (8) produces the

bulk-plume estimates of e and d

e
f

5

hfrwAi ›

›t
hrAi1 ›

›z
hrwAi

� �
hrwAi�1 � ›

›t
hfrAi1 ›

›z
hfrwAi

� �
hfrwAihrwAi�1 � hfr(1�A)ihr(1�A)i�1

, and (11)

d
f

5

hfr(1�A)i ›

›t
hrAi1 ›

›z
hrwAi

� �
hr(1�A)i�1 � ›

›t
hfrAi1 ›

›z
hfrwAi

� �
hfrwAihrwAi�1 � hfr(1�A)ihr(1�A)i�1

, (12)

where the subscript f has been added to e and d to de-

note the fact that these estimates were obtained using

the mixing ratio f. Equations (11) and (12), and variations

on them, have been used to diagnose fractional entrain-

ment and detrainment profiles with f 5 qt in many

simulations of nonprecipitating convection (e.g., Tiedtke

1989; Schumann and Moeng 1991; Siebesma and Cuijpers

1995; Siebesma 1996).

In deep convection, which is precipitating, there is no

naturally conserved tracer. Moist static energy h and

equivalent potential temperature ue are only approxi-

mately conserved. The hydrostatic approximation used

to derive h is violated by nonhydrostatic convection.

Equivalent potential temperature is not conserved un-

der diffusion, and neither h nor ue is strictly conserved

when there is precipitation. Therefore, we introduce a
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passive tracer that will be explicitly conserved within

active air, so it can serve as the conserved quantity in

the mass-flux budgets. In particular, we use the ‘‘pu-

rity’’ tracer, which is advected in the same way as dry

air and has sources and sinks only some distance away

from active air (Romps and Kuang 2010a,b). Those

sources and sinks are specified in the following way.

First, the purity f is reset to one everywhere below the

cloud base at every time step. Above the cloud base,

the purity f is set to zero everywhere at every time step

except within the vicinity of active air. A grid cell is

defined to be in the vicinity of active air if a cube—

seven grid spaces wide and centered on the grid

cell—has any active air within it. This scheme guar-

antees that, above the cloud base, inactive air has an

average purity very close to zero. The reason it is

called the purity tracer is that its mixing ratio within

active air is very nearly equal to the fraction of air that

has come directly from below the cloud base. When f

is the purity-tracer mixing ratio, hfr(1 2 A)i is very

nearly zero. Equations (11) and (12) then simplify dra-

matically for steady-state convection. Defining frac-

tional entrainment and detrainment as � [ hei/hrwAi
and d [ hdi/hrwAi, Eqs. (11) and (12) can be approxi-

mated as

�
f

5
›

›z
loghrwAi � ›

›z
loghfrwAi, and (13)

d
f

5 � ›

›z
loghfrwAi. (14)

Nevertheless, we will use the full expressions given by

Eqs. (11) and (12) even when we are using the purity

tracer for f.

The expressions for ef and df are only as good as the

bulk-plume approximations for fe and fd. For general

fe and fd, the expressions for ef and df are

e
f

5

f
d

›

›t
hrAi1 ›

›z
hrwAi

� �
� ›

›t
hfrAi1 ›

›z
hfrwAi

� �
f

d
� f

e

, and (15)

d
f

5

f
e

›

›t
hrAi1 ›

›z
hrwAi

� �
� ›

›t
hfrAi1 ›

›z
hfrwAi

� �
f

d
� f

e

. (16)

To assess the effect that different choices for fe and

fd have on the estimates of entrainment and de-

trainment, we calculate the partial derivatives of �f and

df with respect to fe and fd:

›

›f
e

�
f

5
�

f

f
d
� f

e

,
›

›f
d

d
f

5�
d

f

f
d
� f

e

,

›

›f
e

d
f

5
�

f

f
d
� f

e

, and
›

›f
d

�
f

5�
d

f

f
d
� f

e

.

Since the average purity (total water) of active air is

greater than the average purity (total water) of inactive

air, fd 2 fe is positive. And, since entrainment and

detrainment are, by definition, nonnegative quantities,

one would certainly hope that Eqs. (15) and (16) would

give positive values for �f and df. Therefore, we see

from these derivatives that �f and df increase when fe

increases or fd decreases.

With these derivatives in hand, we can now see why the

bulk-plume method systematically underestimates � and

d. In Eq. (10), fd is set equal to the mass-flux-weighted

average of f within active air. This approximation misses

an important point. Convecting clouds are highly het-

erogeneous and, as shown by Romps and Kuang (2010b),

that heterogeneity is due to variations in the amount of

entrained air, as measured by the purity tracer. Further-

more, the purity, total water, and buoyancy of cloudy air

parcels are all highly correlated with each other. In a

heterogeneous cloud with a large variance of buoyancy,

we expect detraining parcels to be those parcels that are

less buoyant than average. Given the high correlations of

buoyancy with purity and total water, we also expect

detraining parcels to have mixing ratios of total water and

purity that are below average. Therefore, for f equal to

total water or purity, the bulk-plume equation [Eq. (10)]

systematically overestimates fd.

What about fe? Equation (9) approximates fe as the

average values within inactive air. This might be a suit-

able approximation if convecting clouds or their con-

stituent plumes were initiated randomly in the horizontal

plane—but they are not. A single deep-convective cloud

can contain many plumes bubbling up within it, and on

larger scales clouds develop preferentially in clusters.

Therefore, a cloud tends to entrain air that was recently

detrained from itself or from other clouds. Since that

JUNE 2010 R O M P S 1911



detrained air has higher total water and higher purity than

the average inactive air, the bulk-plume equation [Eq.

(9)] systematically underestimates fe when f is the total

water or purity.

For f equal to total water or purity, the traditional

method overestimates fd and underestimates fe. From

the derivatives of �f and df, we see that the effects of too

high a fd and too low a fe work in the same direction:

they give �f and df that are below their true values.

Thus, the bulk-plume approximations lead to a system-

atic bias that causes fractional entrainment and detrain-

ment rates to be underestimated. The obvious follow-up

question is ‘‘By how much?’’.

3. Large-eddy simulations

We will quantify the amount of underestimation using

simulations of shallow and deep convection in the cloud-

resolving model Das Atmosphärische Modell (DAM;

Romps 2008). DAM is a three-dimensional, fully com-

pressible, nonhydrostatic model of the atmosphere. For

microphysics, the model uses the six-class Lin–Lord–

Krueger scheme (Lin et al. 1983; Lord et al. 1984;

Krueger et al. 1995). Since the debut of DAM, the short-

wave and longwave radiation schemes have been up-

graded to the Rapid Radiative Transfer Model (RRTM)

(Clough et al. 2005; Iacono et al. 2008). In addition, the

finite-volume advection scheme has been upgraded to use

the three-dimensional Uniformly Third-Order Polynomial

Interpolation Algorithm (Leonard et al. 1993) combined

with the three-dimensional, monotonic flux limiter of

Thuburn (1996).

For the simulation of shallow, nonprecipitating, ma-

rine convection, we use the initial conditions and large-

scale forcings described in the intercomparison study of

Siebesma et al. (2003). Those initial conditions and

forcings were designed to replicate the undisturbed pe-

riod during the third phase of the Barbados Oceano-

graphic and Meteorological Experiment (BOMEX)

(Holland and Rasmusson 1973). In this simulation, the

RRTM radiation scheme is replaced by the radiative

cooling profile diagnosed during that period of the

BOMEX campaign. Furthermore, in the microphysics

scheme, the autoconversion of cloud water to rain is

turned off to ensure nonprecipitating convection. The

simulation is performed in a domain that is 12.8 km wide

in the horizontal directions and that has a model top at

3 km. The grid spacing is set to 50 m in all directions.

After allowing the simulation to equilibrate for 3 h,

statistics are collected for the next 5 h. For this simula-

tion, active air is defined as having a liquid-water mixing

ratio greater than 1025 kg kg21 and a vertical velocity

greater than 0.5 m s21.

For the simulation of deep, precipitating convection

over the ocean, we fix the sea surface temperature to

300 K. The magnitude and direction of the shortwave

radiation flux are set to constant values that provide

the average daily insolation at the equinoctial equator

using a zenith angle whose cosine is equal to the daily

insolation-weighted average. Aside from the influence

of the sea surface fluxes and the RRTM radiation, there

are no forcings applied to the atmosphere. The simula-

tion is run in a cubic domain with a 25.6-km width and

periodic boundary conditions in the x and y directions.

The grid spacing used here is 200 m in all directions, and

the simulation has been run to a steady state for several

weeks of model time. Statistics are collected over a

three-week period of radiative–convective equilibrium.

For this simulation, active air is defined as having a

condensate mixing ratio greater than 1025 kg kg21 and

a vertical velocity greater than 1 m s21.

4. Bulk-plume method—Sanity tests

The left panel of Fig. 1 shows the fractional entrain-

ment rate (solid) and fractional detrainment rate (dashed)

as diagnosed from the total-water budget (green) and

from the purity budget (blue) in the simulation of shal-

low convection. At this scale, the two sets of curves

overlap each other so closely that they are difficult to

distinguish from one another. Given the large correla-

tion between purity and total water found previously by

Romps and Kuang (2010b), this overlap is not surpris-

ing. What are surprising are the large excursions of the

fractional detrainment going to the unphysical value of

20.04 m21 near the cloud base and to the very large

value of 0.04 m21 in the inversion. This aspect may be

understood by recognizing that where the mass flux is

changing rapidly, Eq. (14) may be approximated as

d
f

5�

›

›z
hfrwAi

hfrwAi ’�

›

›z
hrwAi

hrwAi .

Here, we have used the fact that the fractional change

in the mass flux is much larger than the fractional change

in the purity of active air. At the extremal height ranges

of the active air, the mass flux m changes from one level

to the next by multiplicative factors much greater than

one. This implies that the length scale m/(dm/dz) is

much less than the grid spacing. Therefore, the use of

a finite-difference approximation to the derivatives ef-

fectively regularizes this length scale. In particular,

2(dm/dz)/m is calculated as

� m(z 1 Dz)�m(z)

(Dz/2)[m(z 1 Dz) 1 m(z)]
,
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where Dz is the grid spacing. When m(z 1 Dz)� m(z),

as is the case near the cloud base, this value is nearly

equal to 22/Dz, which for Dz 5 50 m is 20.04 m21. At

the upper reach of the mass flux, m(z 1 Dz)� m(z), so

df is equal to 2/Dz 5 0.04 m21. In addition, where the

fractional changes in the mass flux are large, Eq. (13)

may be approximated as

�
f

5
›

›z
loghrwAi � ›

›z
loghfrwAi

’
›

›z
loghrwAi� ›

›z
loghrwAi5 0 ,

so �f goes to zero at the extremities. This explains why �f
is spuriously small at the cloud base when, in fact, we

know the true � is quite large there.

The right panel of Fig. 1 shows the fractional en-

trainment rate (solid) and fractional detrainment rate

(dashed) as determined using the mass-flux budget of

the purity tracer in the simulation of deep convection.

Again, we see the large excursions of df at the extrem-

ities of the mass-flux height range. Since the grid spacing

is 200 m, df reaches the unphysical value of 21/(200/2) 5

20.01 m21 near the cloud base and 0.01 m21 near the

tropopause. The other unusual feature in these plots is

the excursion of �f to negative values between 11.4 and

13.6 km, which is the height range over which the av-

erage purity of active air hfrwAi/hrwAi actually in-

creases with height. In reality, changes in the active-air

purity are determined by a balance between two effects:

the detrainment of air whose purity is less than the active-

air average and the entrainment of air whose purity is

also less than the active-air average. Detrainment tends

to increase the purity of active air, while entrainment

tends to decrease it. In the upper reaches of convection,

there is much more detrainment than entrainment, so

the former effect wins out. But, since Eq. (10) assumes

that the detrained air has the same purity as the active-air

average, detrainment cannot affect the purity of active

air in the bulk-plume budget. Therefore, in the bulk-

plume equations, the job falls to entrainment to match

the observed increase in active-air purity. Because in-

active air has a lower purity than active air, only a neg-

ative entrainment can produce the observed increase in

purity, which illustrates, rather strikingly, one of the

inadequacies of the bulk-plume method.

According to the arguments given here, we expect the

bulk-plume � and d to be lower than the true values. One

reason for this is that detraining parcels have a different

purity than the cloud average, and that difference is

comparable to the difference between the mean-cloud

and mean-environment purities. One way to mitigate

this problem is to ramp up the cloud-to-environment

difference so as to minimize the effect of the in-cloud

variance. We can accomplish this with a tracer whose

mixing ratio increases exponentially with height in the

environment. This ‘‘exponential’’ tracer is advected

along with dry air, but sources outside the vicinity of

active air set its mixing ratio to ez/l with some length

scale l. We choose this length scale such that the tracer

increases by an order of magnitude once every 500 m in

the shallow simulation and once every 2 km in the

deep simulation (i.e., once every 10 grid spacings). The

bulk-plume estimates of � and d obtained from this

exponential tracer are shown in Fig. 2 alongside the

corresponding estimates from the purity tracer. As ex-

pected, the use of the exponential tracer increases the

estimates of � and d. Furthermore, the large magnitude

FIG. 1. The bulk-plume estimates of � (solid) and d (dashed) using the purity tracer (blue) and total water (green) for

(left) shallow and (right) deep convection. Units are m21.
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of the increase illustrates how sensitive the bulk-plume

method can be to the distribution of the conserved tracer.

In other words, the bulk-plume estimates of entrainment

are tracer dependent.

This tracer dependence bedevils the very reason for

using the bulk-plume method. The bulk-plume approach

to convection is supposed to work as follows. First, the

convective (i.e., active) flux of some tracer f is measured

or observed. This flux is then used in Eqs. (11) and (12) to

calculate �f and df. Then, for any conserved tracer z

whose clear-air (i.e., inactive) profile is known, we can

calculate the convective flux of z by integrating the fol-

lowing equation:

›

›z
hzrwAi5 hzr(1�A)i

hr(1�A)i hrwAi �
f
� hzrwAid

f
. (17)

Figure 3 compares the fluxes calculated from Eq. (17)

(red curves) with the actual fluxes measured in the deep-

convective LES (black curves); the fluxes are plotted for

the middle and upper troposphere (5–15 km). For the red

curves, Eq. (17) is initialized with the actual flux at one

kilometer and is then integrated upward. In the top left

panel, the red curve is the purity flux calculated from

Eq. (17) using �purity and dpurity. The agreement with the true

flux in black is excellent, which is to be expected, because

Eq. (17) simply inverts the procedure used to calculate

�purity and dpurity from the actual purity flux. The expo-

nential flux calculated using �exponential and dexponential,

shown in the bottom right panel, also produces excellent

agreement. On the other hand, when �purity and dpurity

are used to calculate the flux of the exponential tracer, as

shown by the red curve in the bottom left panel, the es-

timated flux deviates wildly from the true flux. In fact, the

negative �purity causes the estimated flux to become very

large and negative when in fact the true flux is very large

and positive. When �exponential and dexponential are used to

calculate the purity flux, as shown in the top right panel,

Eq. (17) underestimates the true purity flux by an order of

magnitude over the majority of the troposphere. We see,

therefore, that the discrepancy in Fig. 2 is not merely an

academic matter; instead, it has grave consequences for

the estimates of convective fluxes.

5. Direct measurement—Theory

What we would really like is a way to measure the

entrainment and detrainment rates directly in a cloud-

resolving model. Given how complicated the interface

is between active and inactive air in turbulent convec-

tion, direct measurement has been deemed impractical

(Siebesma 1996); however, there is a straightforward way

to define the local entrainment and detrainment rates.

Recall that e is the local source of active air and d is the

local sink of active air. By definition, both of these are

nonnegative quantities. Also, since a point in the atmo-

sphere entrains when it switches fromA5 0 toA5 1 and

detrains when it switches fromA5 1 toA5 0, e and d are

never positive at the same point and time. Therefore, we

see from Eq. (2) that e and d can be diagnosed as follows:

e 5 max 0,
›

›t
(rA) 1~$ � (r~uA)

� �
, and (18)

d 5 max 0,� ›

›t
(rA)�~$ � (r~uA)

� �
. (19)

Where the expression ›/›t(rA) 1~$ � (r~uA) is positive,

there is a source of active air (i.e., entrainment). Where

FIG. 2. The bulk-plume estimates of � (m21) in (left) shallow and (right) deep convection using the purity tracer (blue)

and the exponential tracer (red).
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it is negative, there is a sink of active air (i.e., detrain-

ment). Therefore, we will refer to ›(rA)/›t 1~$ � (r~uA)

as the ‘‘activity source.’’

It is important to note that Eqs. (18) and (19) are

exactly the same definitions of entrainment and de-

trainment used in the bulk-plume approach: subtracting

Eq. (19) from Eq. (18) produces Eq. (2). What differs

here from the bulk-plume method is the proposal that

we diagnose Eqs. (18) and (19) directly from the simu-

lation without recourse to tracers or horizontal averag-

ing. We will refer to the direct evaluation of these two

equations as ‘‘direct measurement.’’

To get comfortable with these expressions, let us work

through three very simple examples. The most trivial

example is the case where no infinitesimal Lagrangian

parcel ever flips from one state of activity to the other. In

that case, rA is a conserved density, so the activity

source is zero and, by Eqs. (18) and (19), e and d are

zero. Next, consider a motionless fluid that, at time t 5 0,

suddenly qualifies as active. An activity operator that

would give this result is A 5 H(t), where H is the

Heaviside step function. Since the fluid is motionless,

›r/›t 5 0 and ~u 5 0, so the activity source reduces to

r›/›tH(t) 5 rd(t), where d is the Dirac delta function.

Therefore, e 5 rd(t) and d 5 0, which confirms that there

is a Delta-function burst of entrainment at t 5 0. Finally,

consider the case of constant-density air moving in the x

direction with velocity u. If we define active air as air

FIG. 3. Actual fluxes (black solid) and estimated fluxes (red dashed) of the (top) purity tracer and (bottom) ex-

ponential tracer in the simulation of deep convection. (left) The red dashed curves are calculated using the bulk-

plume equations with � and d obtained using the bulk-plume method with the purity tracer. (right) The red dashed

fluxes are calculated using the bulk-plume equations with � and d obtained using the bulk-plume method with the

exponential tracer. The units for the fluxes are kg m22 s21.
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that is located at positive x, thenA5H(x). Therefore, if

u . 0, then e 5 rud(x) and d 5 0; in other words, there is

a source of active air at the origin. If u , 0, then e 5 0,

d 5 2rud(x), and there is a sink of active air at the or-

igin. For details on the implementation of these equa-

tions in a numerical model, refer to the appendix.

6. Direct measurement—Sanity tests

Before we use direct measurement—Eqs. (18) and

(19)—to answer substantive questions of science, we

first want to evaluate any possible errors in the directly

measured e and d. In particular, we want to investigate

any errors of the form

hei
measured

5 hei
actual

1 error
e
, and

hdi
measured

5 hdi
actual

1 error
d
.

From Eq. (7), we know that he� diactual 5 ›/›thrAi1
›/›zhrwAi at each height. Therefore, our first test is to

check that he 2 dimeasured also equals this quantity. We

calculate ›/›t rAh i1 ›/›z rwAh i by keeping track of the

active-air mass flux at each vertical level in the simula-

tion. For the simulation of shallow convection, this is

plotted as the dashed line in the left panel of Fig. 4. Next,

we calculate he 2 dimeasured by averaging the directly

measured e 2 d at each vertical level; the result is plotted

as the solid line. As expected, there is very good

agreement between these two curves. Although the

peak values differ near the cloud base, the integrals of

the curves over their positive ranges near the cloud base

are in excellent agreement. For the simulation of shal-

low convection, these values differ by less than 1%. The

right panel of Fig. 4 plots the same two curves for the

simulation of deep convection. Again, there is very good

agreement; the integrals of the positive values near the

cloud base agree to within 2%. Therefore, we conclude

that he 2 dimeasured 5 he 2 diactual, which implies that

errore 5 errord.

To put an upper bound on errore and errord, we use

the fact that heimeasured, heiactual, hdimeasured, and hdiactual

are nonnegative. This provides us with the following

inequalities:

error
e
5 hei

measured
� hei

actual
# hei

measured
, and

error
d

5 hdi
measured

� hdi
actual

# hdi
measured

.

Using the fact that errore 5 errord, we conclude that

error
e
5 error

d
# min(hei

measured
, hdi

measured
).

We can then put an upper bound on errore and errord by

simulating a turbulent flow with A that would be ex-

pected to give either a small hei or a small hdi. For this

purpose, we simulate a warm bubble that rises out of the

boundary layer leading to a deep cumulonimbus. This

flow is simulated in a 25.6-km wide cubic domain with

periodic boundary conditions and an isotropic 100-m

grid. A passive tracer is initialized to one below 1 km

and to zero above, and this tracer is given no sources or

sinks during the simulation. We define active air as air

that has a mixing ratio of this passive tracer greater than

or equal to 0.99 kg kg21. Above 1 km, we expect de-

trainment to dominate over entrainment because the

mixing of active and inactive parcels is likely to produce

mixing ratios less than 0.99 kg kg21.

FIG. 4. The left-hand side of Eq. (7) (dashed) and the horizontal average of the directly measured e 2 d (solid) in the

simulations of (left) shallow and (right) deep convection. Units are kg m23 s21.
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The directly measured profiles of hei and hdi from this

bubble-release experiment are shown in the left panel of

Fig. 5 plotted on a log axis. We can see from this plot that

detrainment is everywhere greater than entrainment.

To quantify the relative amounts of entrainment and de-

trainment, the right panel plots hei/hdi. Broadly speaking,

the curve may be described as having values between 0.5

and 0.8 in the first 500 m, a drop to a local minimum of

0.03 at 1 km, and values in the vicinity of 0.2 throughout

most of the troposphere.

How can we understand the relatively large values of

hei/hdi near the surface? At the end of the simulation,

the fraction of air that is active ranges from zero at 1 km

to about 60% at the surface. In other words, there is still

a large reservoir of active air near the surface. Further-

more, during the simulation, the inactive air in the

lowest 500 m had an average purity of 95%. Thus, the air

in the lower 500 m is split fairly evenly between active

air with a mixing ratio greater than 99% and inactive air

with an average mixing ratio of 95%. This is a decent

environment for generating entrainment through the

diffusion of tracer from air with a mixing ratio of 1 to air

whose mixing ratio is just below 0.99 kg kg21. In con-

trast, at a height of 1 km, which is the original boundary

between tracer values of 1 and 0, there is intense de-

trainment as active air rising from below 1 km abruptly

encounters air with a mixing ratio of 0 kg kg21. This

large amount of detrainment explains the low hei/hdi there.

Throughout the rest of the troposphere, where there

is fully developed turbulence, the ratio takes values

around 0.2. The question, then, is how to interpret this.

Does the actual flow really lead to 20% as much en-

trainment as detrainment? Or is this entrainment an

artifact of numerical error in the calculation of hei and hdi?
Or did the algorithm for calculating hei and hdi accurately

measure entrainment and detrainment that the numer-

ical simulation generated spuriously? Unfortunately,

it is not clear how to distinguish between these possi-

bilities. On the bright side, however, this simulation al-

lows us to put a rather stringent upper bound on the

errors:

error
e
5 error

d
# hei

measured
’ 0.2hdi

measured
.

In other words, the worst-case scenario is that 0.4/1.2 5

33% of he 1 dimeasured is spurious.

Having performed well on these tests, we can now

apply the direct-measurement method to the simulations

of shallow and deep convection. The left panel of Fig. 6

plots the resulting � and d for the simulation of shallow,

nonprecipitating convection. The most striking thing

about this plot is the large ranges of � and d. The range

for � is 1.6–29 km21, and the range for d is 2.5–120 km21.

Another interesting feature is that entrainment domi-

nates over detrainment below 700 m, but above that

height detrainment exceeds entrainment. Beginning at

the bottom of the inversion at 1500 m, the detrainment

increases rapidly, as expected.

The plot of � and d for the simulation of deep con-

vection is shown in the right panel of Fig. 6. Here, we see

that many of the qualitative features of shallow con-

vection are present in deep convection as well. For ex-

ample, � and d span very large ranges of values: from 0.18

to 11 km21 for fractional entrainment and from 0.73

to 15 km21 for fractional detrainment. Furthermore,

entrainment dominates over detrainment in the first

FIG. 5. (left) Rates of hei (solid) and hdi (dashed) for the bubble-release experiment in which active air is defined as

having a tracer mixing ratio greater than 0.99. Units are kg m23 s21. (right) The same profiles divided by hdi.
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kilometer—where convecting clouds are born—and de-

trainment increases rapidly between 10 and 15 km, where

convection terminates. Between 1 and 10 km, the de-

trainment rate typically exceeds the entrainment rate,

but there are a couple of altitude ranges (near 4 and

8 km) where entrainment exceeds detrainment.

7. Direct measurement versus bulk plume

As we have seen, the bulk-plume method gives

unphysical values for � and d near the bottom and top of

the cloud layer. For that reason, we will compare the

bulk-plume and direct-measurement methods where the

bulk-plume method has at least some chance of giving

the correct answer. For shallow convection, we will fo-

cus on the main part of the cloud layer, starting 100 m

above the cloud base (725 m) and ending 100 m below

the inversion (1400 m). The left panel of Fig. 7 shows �

and d together with �f and df for two tracers—total

water and purity—zoomed in on this region of interest.

We see that the bulk-plume method underestimates the

directly measured entrainment and detrainment. In this

altitude range, the directly measured fractional entrain-

ment ranges from 2.2 to 2.8 km21, but the bulk-plume

fractional entrainment ranges from only 0.8 to 1.7 km21.

For detrainment, the directly measured values range

from 3.5 to 4.1 km21 and the bulk-plume values range

from 2.2 to 2.9 km21.

FIG. 6. The directly measured � (solid) and d (dashed) in the simulations of (left) shallow and (right) deep convection.

Units are m21.

FIG. 7. The � (solid) and d (dashed) using direct measurement (black) and the bulk-plume equations with the purity

tracer (blue) and total water (green) in the simulations of (left) shallow and (right) deep convection. Units are m21.
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For the simulation of deep convection, we will focus

on the main part of the cloud layer, starting 1 km above

the cloud base (1.5 km) and ending 1 km below the cold-

point tropopause (13.7 km). The right panel of Fig. 7

shows � and d, as well as �f and df calculated using the

purity tracer, zoomed in on this region of interest. As in

shallow convection, �f and df are smaller than the di-

rectly measured values. In this altitude range, the di-

rectly measured � ranges from 0.5 to 1.3 km21, but �f
ranges from 20.6 to 0.6 km21. For detrainment, d ranges

from 0.7 to 3.7 km21, and the bulk-plume df ranges from

0.2 to 2.9 km21.

It is interesting to ask how these results would change

given a different activity operator. For example, what if

eddies or gravity waves are causing parcels to oscillate

in and out of the active category because of the w $

1 m s21 criterion? Exactly how this phenomenon would

affect the diagnosed entrainment rates is far from clear:

it would contribute to the directly measured entrain-

ment (as the same parcel flips to active over and over

again), it would contribute to ›/›z rwAh i and ›/›z frwAh i
in the numerator of Eq. (15), and it would increase the

overall mass flux hrwAi, which enters the equation for

fractional entrainment through � 5 hei/hrwAi. Given all

of this complexity, it is at least conceivable that the net

effect of the w $ 1 m s21 criterion would be to increase

the difference between the directly measured and bulk-

plume estimates of �. To test this, we can diagnose both

simulations using A 5 H(qc 2 1025) so as to eliminate

any contribution from parcels flipping in and out of the

active category because of oscillations in their vertical

velocity. The results, shown in Fig. 8 indicate that the

gap between the two estimates has not closed. In fact,

with this definition of active air, the bulk-plume esti-

mates are more erroneous in both absolute and rela-

tive terms. Above 13 km, hrwAi is negative because

of overshooting clouds having a positive e 2 d before

they sink back down. Since � 5 hei/hrwAi and f 5

hdi/hrwAi, � and d become negative. This is not a fail-

ure of direct measurement but rather a failure of the

notion of a ‘‘rate per distance,’’ which has its concep-

tual origin in plume models with strictly nonnegative

vertical velocities.

We see from these comparisons that the bulk-plume

method produces estimates of entrainment and de-

trainment that are significantly lower than the directly

measured values. Although this error varies by height

and by the type of convection, the bulk-plume equations

can be grossly characterized as underestimating entrain-

ment by at least a factor of 2. These differences are

greater than the upper bound on the error of the directly

measured values. Therefore, we conclude with confi-

dence that the bulk-plume entrainment and detrainment

rates are systematically biased low.

8. Theories for e and d

Now that we have reliable estimates of � and d from

two types of convection, we can test various theories for

� and d. One such theory is that � scales like the inverse of

the largest eddy sizes in the cloud, which, as the argu-

ment goes, scale with the height of the cloud; in other

words, � ; 1/z (e.g., Siebesma 1996). It has been argued

that this theory is supported by the general tendency of �

to decrease with height as diagnosed using the bulk-

plume method in shallow convection (de Roode et al.

FIG. 8. As in Fig. 7, but withA5H(qc 2 1025) instead of eitherA5H(w 2 ½)H(qc 2 1025) for shallow convection or

A 5 H(w 2 1)H(qc 2 1025) for deep convection. Units are m21.
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2000; Siebesma 1996; Siebesma et al. 2003). As a result,

the proposed � ; 1/z relationship has been used in con-

vective parameterizations (Jakob and Siebesma 2003;

Bretherton et al. 2004); however, it is clear from Fig. 7

that neither the bulk-plume entrainment rates nor the

directly measured entrainment rates bear even a passing

resemblance to a 1/z relationship. Furthermore, with �

and d diagnosed for deep convection, we can put the

proposed 1/z relationship through an even more basic

test. Since the shallow convection reaches a height of

1.5 km and the deep convection reaches a height of

15 km, a 1/z scaling predicts that �would be one-tenth as

large in deep convection as it is in shallow convection. In

the main part of the cloud layer in shallow convection, �

ranges from 2.2 to 2.8 km21, so we would expect � in the

main cloud layer of deep convection to range from

approximately 0.2 to 0.3 km21. Instead, we find that �

ranges from 0.5 to 1.3 km21 in deep convection. Fur-

thermore, it is clear from the profile of � in the right

panel of Fig. 7 that � does not even decrease mono-

tonically with height in the main part of the cloud layer.

In fact, it increases almost monotonically from approx-

imately 5 to 11 km. Using the less restrictive activity

operator, Fig. 8 shows that the fractional entrainment

rate increases over the majority of the cloud layer in

shallow convection. Therefore, fractional entrainment

does not scale as 1/z.

Another approach has been to relate the entrainment

and detrainment rates to b or the buoyancy gradient

db/dz. One suggestion is that � decreases with increasing

buoyancy (Lin 1999). Another proposal is that entrain-

ment increases with increasing db/dz (Bretherton and

FIG. 9. Comparison of (left) � (km21) and (right) d (km21) vs (top) b (s22) and (bottom) db/dz (s22) for shallow

(black) and deep (blue) convection.
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Smolarkiewicz 1989), an idea that has been used in

convective parameterizations (Emanuel and Živković-

Rothman 1999; von Salzen and McFarlane 2002). To test

these ideas in the context of the shallow and deep sim-

ulations, Fig. 9 plots the profiles of (left) � and (right) d

against the profiles of (top) b and (bottom) db/dz. The

shallow data are shown in black, and the deep data are

shown in blue. These plots disprove any simple re-

lationships between � and b, � and db/dz, or d and db/dz.

The only glimmer of hope is the relationship between d

and b. In both the shallow and deep simulations, de-

creases in buoyancy lead to a roughly linear increase in

fractional detrainment. Of course, the slope and in-

tercept of the linear fits to the deep and shallow data are

different, but this is to be expected: deep convective

clouds are, typically, much wider than shallow clouds, so

their smaller area-to-volume ratio leads to smaller

fractional detrainment rates.

The linear relationship between buoyancy and d can

be illustrated quite nicely around the melting line in the

simulation of deep convection. The domain-wide heat-

ing caused by the release of the latent heat of fusion is

shown in the top curve of Fig. 10. The domain-averaged

temperature profile crosses 273.16 K at a height of

4.6 km, denoted by a thin vertical line in the figure.

(Another line at 4 km is also added to aid the eye in

lining up features from the various curves.) As that top

curve makes clear, the melting of snow and graupel

below the melting line provides a strong diabatic cooling

in a 1-km layer below 4.6 km. To see the effect of this

cooling, we define DT as the domain-wide horizontally

averaged temperature minus the running mean of that

temperature over a 2-km interval. The second curve of

Fig. 10 shows that this cooling produces a temperature

excursion in DT of about 20.15 K at 4 km. The third

curve shows the effect of this temperature excursion on

the average buoyancy of active air. The buoyancy has

a local maximum at 4.0 km, where DT is most negative,

and a local minimum at 4.6 km, where DT has recovered.

Between 4.0 and 4.6 km, the 0.006 m s22 change in the

average buoyancy of active air roughly agrees with

the 0.2-K change in DT: 0.2 K/273 K 3 9.81 m s22 5

0.007 m s22.

The variations in � and d at these heights, shown in the

bottom two curves of Fig. 10, can be plausibly explained

as a boom-and-bust cycle for the convecting clouds. As

a cloud enters the vicinity of 4.0 km, the negative ex-

cursion in DT leads to an increase in the buoyancy of all

parcels within that cloud. Parcels that were close to

detraining experience a boost in buoyancy that tempo-

rarily spares them that fate, which reduces the overall

fractional detrainment of the cloud. Meanwhile, since

the whole cloud is experiencing a larger buoyant accel-

eration, it is able to activate surrounding air that would

not have otherwise reached a vertical velocity of 1 m s21.

But when DT recovers around 4.6 km, much of that

extra baggage—those parcels that would have detrained

earlier or would not have entrained in the first place—

detrains, causing a rise in d. This sudden reduction in

buoyancy means the cloud is unable to accelerate as

much air to the 1 m s21 threshold, which lowers �. In

other words, the boom goes bust.

9. Spatial and temporal distributions of e and d

Of course, there is only so much that can be accom-

plished by studying horizontally averaged profiles. For-

tunately, direct measurement provides access to the full

four-dimensional distribution of e and d. This paves the

way to correlating e and d with the local properties of

the flow to reveal the mechanisms responsible for en-

trainment and detrainment. To illustrate the level of

detail that is possible, Fig. 11 displays the azimuthally

averaged (top) active air, (middle) entrainment, and

(bottom) detrainment during the release of a deep

convective bubble simulated with an isotropic 100-m

grid spacing. Each panel shows data averaged over

FIG. 10. (top) Melting of snow and graupel produces a domain-

wide cooling at the melting line (W m22). (second from top) This

cooling leads to a negative excursion in DT (K) at 4 km. (second

from bottom) The negative excursion in DT centered on 4 km,

followed by a robust recovery in DT at 4.6 km, leads to a boom-

and-bust cycle in b (m s22). (bottom) At 4 km, where the average

b is high, � increases and d decreases; at 4.6 km, where the average

b is low, � decreases and d increases (km21).
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20 min, with averaging intervals ending (left) 40, (middle)

60, and (right) 80 min into the simulation.

Between 20 and 40 min, lateral entrainment takes

place predominantly at radii between r 5 1 and 2 km

and heights between z 5 1 and 5 km. There is also

a smooth, striated pattern of entrainment at an altitude

of 7.5–10 km that is suggestive of pileus caps. At 60 min,

there are still heavy amounts of entrainment between

radii of 1 and 2 km and extending now up to an altitude

of 10 km. There is also a ring of entrainment in the

outflow at a radius of 4 km and a height of about 12 or

13 km. Finally, at 80 min, the pattern of entrainment has

settled into a mushroom shape, resembling something of

a question mark in this r–z plot. The highest concen-

trations of entrainment are confined between r 5 0 and

2 km and z 5 1 and 7 km.

At both 40 and 60 min, the location of maximum de-

trainment is confined to the upper central core of the

cloud. At 40 min, the detrainment maximum occurs at

r 5 1–2 km and a height of 5 km. At 60 min, the region

of maximum detrainment has moved to r 5 0–3 km and

z 5 12–15 km. At 80 min, the pattern has largely dis-

integrated, but the maximum detrainment still appears

to be located in the upper central region of the cloud.

10. Conclusions

As shown analytically, the standard bulk-plume method

is systematically biased toward diagnosing low values of

entrainment and detrainment. In previous work, the

bulk-plume analysis has relied on naturally occurring con-

served tracers, such as total water in nonprecipitating

FIG. 11. (top) Azimuthally averaged concentrations of active air (kg m23); (middle), (bottom) e and d (1023 kg m23 s21), respectively, at

40, 60, and 80 min into the bubble simulation.
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convection. By introducing artificial tracers, the stan-

dard analysis can be extended to precipitating convec-

tion. The use of these tracers in large-eddy simulations

of shallow and deep convection reveals more problems

with the bulk-plume method: it produces unphysical

negative values of entrainment and it produces esti-

mates of entrainment that depend on the distribution of

the tracer being used.

Direct measurement of entrainment and detrainment

is proposed here as an alternative to the bulk-plume

method of diagnosing these rates. Direct measurement

diagnoses these quantities at the gridcell level by ana-

lyzing the local sources and sinks of convecting air.

Comparing the results of direct measurement to the

results of the bulk-plume method in both shallow and

deep convection, the bulk-plume estimates are found to

underestimate entrainment and detrainment by roughly

a factor of 2.

It is not being proposed here that the directly mea-

sured � and d should be used in the bulk-plume equations.

As we have seen, there is no one set of entrainment/

detrainment profiles that will make the bulk-plume method

work for all tracers. This deficiency has to do with the

inability of the bulk-plume method to accurately esti-

mate the mixing ratios of entraining and detraining air

fe and fd. Fortunately, there are other models of con-

vection, such as the stochastic parcel model of Romps

and Kuang (2010b), that intrinsically simulate cloud

heterogeneity and can therefore predict fd. Coupled

with a parameterization of convective organization,

such models might be able to accurately predict fe as

well. For the validation of such models, it will be critical

that we have accurate measurements of � and d from

large-eddy simulations.

The profiles of � measured here for shallow and deep

convection have already allowed us to evaluate some

existing theories of entrainment. For example, fractional

entrainment is found to not scale like the inverse of

height 1/z. Also, fractional entrainment scales neither

like the cloud buoyancy b nor like the gradient of cloud

buoyancy db/dz. Instead, evidence is found that the

fractional detrainment scales linearly with 2b. Fortu-

nately, direct measurement raises the possibility that

future work could tease out the properties of the local

flow that lead to entrainment.
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APPENDIX

Implementation of Direct Measurement

In a numerical model, ‘‘active air’’ is not a prognostic

field that is explicitly advected around the domain. In-

stead, the activity operator A is applied at the end of

every time step to determine which grid cells are active.

To say that ‘‘active air is being advected’’ is really to say

that the quantities upon which A depends are being

advected along with the flow. For example, we could

define active air such that some mixing ratio q is greater

than some threshold, say, ½ kg kg21. Let us sup-

pose that we begin at t 5 0 with grid cells that have either

q 5 0 kg kg21 or q 5 1 kg kg21. With a monotonic and

diffusive advection scheme, grid cells at later times will

take values in the range of 0 to 1 kg kg21; however, the

activity will still only take binary values of 0 or 1 de-

pending on the sign of q 2 ½. As the air with positive

q 2 ½ advects along the grid, the active region will ad-

vect with it, albeit in a more halting fashion.

Since active air is not a quantity that is moved around

the domain by the model’s advection scheme, there is

no explicit calculation of the r~uA fluxes in the model.

Therefore, we must provide our own interpretation of

this quantity. In a finite-volume model, we must decide

how to interpolate A onto the faces of grid cells. In the

calculation of r~uA, we use the facial values of r and ~u

that are used for the advection of dry-air mass. ForA, we

use first-order upwind interpolation onto faces for the

following reasons: it is monotonic, its small stencil pro-

vides the highest spatial resolution of e and d, and it

facilitates the use of fractional time steps to be discussed

shortly.

In Eqs. (18) and (19), the contributions to e and d at~x

generally occur only at the precise moments when the

boundary of active air passes over~x. In a numerical grid,

the location of the boundary is only known to within

the grid spacing, so the moment of entrainment or de-

trainment cannot be known as precisely. Therefore, we

must add up the numerical approximation to ›/›t(rA) 1
~$ � (r~uA) over the full time it takes the boundary to pass

through a grid cell of width Dx. In particular, the activity

source at a grid cell is added up for the entire time that

the grid cell is adjacent to a cell of the opposite activity

(i.e., the period of adjacency).

To see what goes wrong if we do not sum over the

period of adjacency, let us consider the one-dimensional

advection of active air with a Courant number of ½ as

depicted in Fig. A1. The definition ofA is not important

for this gedanken experiment so long as the mixing ra-

tios on which it depends are all being advected along

with the air. SinceA takes only binary values, it shifts by
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one grid cell once every two time steps. Figure A1 shows

the values ofA at five different times for three grid cells

oriented along the direction of the flow. Here, shaded

cells are active, and blank cells are inactive. On the right

are depictions of the contributions to the activity source

for the middle grid cell during each time step. All values

have been normalized to a unit square cell, a unit time

step, and a unit density. The numbers next to the arrows

indicate the magnitude of the flux through the respective

faces (i.e., ruA), and the numbers in the center of the

middle cell denote the local tendency of active air [i.e.,

›/›t(rA)].

Let us now walk through this example one step at

a time. At time t 5 0, the grid cell just to the left of the

three depicted here is active. During the first time step,

the upwind values ofA on the middle cell’s two faces are

both zero, so there is no contribution to the activity

source in the middle grid cell. At t 5 1, the mixing ratios

of the left grid cell have changed sufficiently to qualify

that grid cell as active. At this point, the middle cell is

adjacent to the activity boundary, so we begin summing

the activity source from this point on. During the second

time step from t 5 1 to t 5 2, the upwind value of activity

on the first face is 1, so the flux through that face is equal

to one times the Courant number, or ½. Therefore,

during the time step from t 5 1 to t 5 2, the activity

source for the middle cell is 2½. From t 5 2 to t 5 3, the

flux through the first face is again equal to ½, contrib-

uting an additional 2½ to the activity source. But at time

t 5 3, the middle cell qualifies as active, so the switch

from inactive to active contributes 1 to the activity

source. During the next time step, the upwind value ofA
on both faces is 1, so there is no longer a convergence of

active air into the middle cell. By time t 5 5 (not shown),

the right cell will qualify as active, and the middle cell

will therefore no longer be adjacent to the activity

FIG. A1. Active air is advected to the right with a Courant number of ½. The magnitudes next to the arrows denote

ruA through the two faces of the middle cell. The magnitudes in the middle cell denote that cell’s ›/›t(rA). Only by

summing these contributions to the activity source during the full period of adjacency do we diagnose zero � and d, as

expected for pure advection.
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boundary. At that point, we sum the activity sources for

the middle cell and assign the result to either e or d. As

we would expect for advection, the sum of sources is 2½ 2

½ 1 1 5 0. Had we assigned the sources at every time

step, then we would have concluded, erroneously, that

the middle cell had detrained max[0, 2(2½)] 5 ½ units

of active air during the second time step and had en-

trained max(0, 2½ 1 1) 5 ½ units of active air during

the third time step. Only by summing the activity source

over the period of adjacency do we properly account for

the finite grid spacing.

We must also account for the finite size of the time

step. In general, cells will flip between active and in-

active at some point in the middle of a time step. This

complication is avoided if the Courant number is much

less than one or, in the case of 1D advection, is equal to

1/n for some integer n. In the case depicted in Fig. A1,

the Courant number was ½, so we did not run into any

difficulty with regards to the finite time step. But let us

consider the case depicted in Fig. A2 in which air with

q 5 0 kg kg21 and q 5 1 kg kg21 is advected to the right

with a Courant number of 0.7. Consider an activity op-

erator defined as A 5 H(q�½). At t 5 0, the average

q in the first cell is 0.2 kg kg21, so it is inactive. There-

fore, the upwind value of activity on the middle cell’s left

face is zero, as shown by the flux numbers labeled ‘‘W/o

averaging.’’ At the end of the first time step, the first cell

has an average q 5 0.9 kg kg21 . ½ kg kg21, so it is

active. Therefore, the flux through the left face during

the second time step is 0.7. During that second time step,

the activity of the middle cell also switches to one, so the

total activity source for the middle cell is 1 2 0.7 5 0.3.

During subsequent time steps, the convergence of active

air into the middle cell is zero, and, by t 5 4, the right cell

becomes active and the middle cell is no longer adjacent.

Therefore, we would conclude that the middle cell en-

trained 0.3 units of air.

Since the active air is simply advecting, we should not

have measured any entrainment or detrainment. So

what has gone wrong here? When calculating the fluxes

FIG. A2. Air with a step function of q (kg kg21) is advected to the right with a Courant number of 0.7. Active air is

defined by A 5 H(q 2 ½). The fluxes of active air through the middle cell’s faces as obtained without averaging of

activity during time steps are labeled ‘‘W/o averaging.’’ The fluxes with time averaging are labeled ‘‘With averaging.’’

Only by averaging the activity during time steps do we diagnose e 5 d 5 0, as expected for pure advection.
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during the first time step, we have not accounted for

the activity of the first cell during four-sevenths of the

time step. By using the value of the first cell’s activity at

t 5 0 throughout the entire time step, we have under-

estimated the flux through that left face. Instead, we

should use the average upwind value during the time

step, which was 4/7. The average flux was, therefore,
4/7 3 0.7 5 0.4. Similarly, during the second time step,

the average value of the middle cell’s activity was one-

seventh, so the average flux on the second face was 1/7 3

0.7 5 0.1. By averaging activity during time steps when

calculating the fluxes, we find that the activity source in

the middle cell was 20.4 2 0.7 1 0.1 1 1 5 0.

To simplify the algorithm for averaging activity in

a numerical model, we restrict attention toA that can be

defined as

A5
1, for j

1
$ 0 and . . . and j

n
$ 0,

0, otherwise,

�

for some set of n gridcell properties ji. For example, if

n 5 2 with j1 5 qc 2 1025 and j2 5 w 2 1, then air is

active when it has a condensate mixing ratio greater

than 1025 kg kg21 and a vertical velocity greater than

1 m s21. Let us denote the value of ji before the time

step by a superscript 1 and the value afterward with

a superscript 2. For a ji that changes sign during the time

step, the time at which it crosses zero is jj1
i j/jj2

i � j1
i j,

which can also be written as jj1
i j/(jj1

i j1 jj2
i j).

Now, consider a grid cell that becomes active during

a time step. This means that there are some negative j1
i

but no negative j2
i . The crossing time for a ji that

switches from negative to positive can be written as

�j1
i /(jj1

i j1 jj2
i j). Because of the logical ‘‘ands’’ in the

definition of A, the cell becomes active when the last ji

becomes positive. Therefore, we want the largest cross-

ing time for all the ji that cross zero during the time step.

Since the ji that do not cross zero all have positive j1
i ,

the switch from inactive to active takes place at the

maximum of �j1
i /(jj1

i j1 jj2
i j) for all i. Similarly, if the

cell flips from active to inactive, the switch takes place at

the minimum of j1
i /(jj1

i j1 jj2
i j) for all i such that j2

i , 0.

Therefore, A may be summarized as

A5

0, if j1
i , 0 for some i and j2

j , 0 for some j,

1, if j1
i $ 0 for all i and j2

j $ 0 for all j,

1�max
�j1

k

j1
k

�� ��1 j2
k

�� ��
 !

, if j1
i , 0 for some i and j2

j $ 0 for all j,

min
j1

k

j1
k

�� ��1 j2
k

�� �� s.t. j2
k , 0

 !
, if j1

i $ 0 for all i and j2
j , 0 for some j.

8>>>>>>>>><
>>>>>>>>>:

(A1)

In summary, we implement Eqs. (18) and (19) by using

first-order upwind interpolation for A, summing the

activity source over the period of adjacency, and aver-

aging activity in time.
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