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ABSTRACT

The vertical velocities of convective clouds are of great practical interest because of their influence onmany

phenomena, including severe weather and stratospheric moistening. However, the magnitudes of forces

giving rise to these vertical velocities are poorly understood, and the dominant balance is in dispute. Here, an

algorithm is used to extract thousands of cloud thermals from a large-eddy simulation of deep and tropical

maritime convection. Using a streamfunction to define natural boundaries for these thermals, the dominant

balance in the vertical momentum equation is revealed. Cloud thermals rise with a nearly constant speed

determined by their buoyancy and the standard drag lawwith a drag coefficient of 0.6. Contrary to suggestions

that cloud thermals might be slippery, with a dominant balance between buoyancy and acceleration, cloud

thermals are found here to be sticky, with a dominant balance between buoyancy and drag.

1. Introduction

The vertical velocities of cloud updrafts strongly af-

fect aerosol activation rates (Abdul-Razzak et al. 1998),

formation of hail (Danielsen et al. 1972), clear-air tur-

bulence (Lane et al. 2012), aircraft hazard (Lane et al.

2003), lightning flash rates (Romps et al. 2014), tornado

occurrence (Davies-Jones 1984), gravity wave genera-

tion (Fovell et al. 1992), the depth of convective over-

shooting (Wang 2007), and the convective moistening of

the stratosphere (Grosvenor et al. 2007). Despite the

importance of vertical velocities, the balance of forces

giving rise to those motions is poorly understood. To

make some headway on elucidating this balance of

forces, we focus here on the quantum of moist convec-

tion: the cloud thermal. Our goal is to answer the fol-

lowing question: what is the dominant balance in the

vertical momentum budget of mature cloud thermals?

One hypothesis is that the dominant balance in the

vertical momentum budget of a mature cloud thermal is

between buoyancy and acceleration (dw/dt; buoyancy).

In this hypothesis, drag plays no significant role. Since

cloud thermals take the form of a quasi-spherical vortex

ring (Levine 1959), evidence in favor of this no-drag

picture can be found in the experimental literature on

vortex rings. Reynolds (1876) was the first to study the

momentum budget of vortex rings in a laboratory set-

ting, and he concluded that ‘‘these rings do move with-

out any appreciable resistance.’’ This conclusion was

bolstered by the laboratory work of Maxworthy (1974),

who estimated the drag coefficient to be much less than

one at a value of about 0:046 0:005. More recently,

Sherwood et al. (2013) argue that cloud thermals should

have no form drag, just like Hill’s vortex (Hill 1894).

Because of this presumed lack of drag, Sherwood et al.

(2013) refer to cloud thermals as ‘‘slippery.’’ Based on

this assumption, the parcel model in that study neglects

form drag and wave drag by setting the drag coefficient

to zero.

The alternate (and opposite) hypothesis is that the

dominant balance is between buoyancy and drag

(buoyancy;drag). We will refer to the thermals in this

scenario as ‘‘sticky.’’ The evidence in favor of this hy-

pothesis comes from recent cloud-resolving studies of

moist convection. By conditionally sampling grid cells

in a large-eddy simulation (LES) of shallow convection,

de Roode et al. (2012) find that ‘‘the pressure gradient is

the dominant term balancing the buoyancy,’’ and this

conclusion is bolstered by the similar analysis of Wang
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and Zhang (2014). In fact, even the numerical results of

Sherwood et al. (2013) exhibit a pressure perturbation

acceleration comparable in magnitude to the buoyancy.

Since form drag and wave drag manifest as a net pres-

sure perturbation gradient within the thermal, these

results support the hypothesis of sticky thermals. Here,

we extend the studies of de Roode et al. (2012),

Sherwood et al. (2013), and Wang and Zhang (2014) by

studying thousands of snapshots of cloud thermals in an

LES of deep convection with the goal of providing a

definitive answer to the slippery-or-sticky question.

To put this issue in a mathematical context, let us

imagine that we have some objective rule for identi-

fying the region of space occupied by a thermal. Let

V(t) be the subset of space identified as the thermal at

time t. For a general function of space and time f (x, t),

the rate of change of the integral of f over V can be

written as
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where ›V(t) is the two-dimensional boundary ofV(t), n̂ is

the normal unit vector on ›V pointing outside the ther-

mal, and vt is a three-dimensional vector on and normal

to ›V that is defined to give the movement of ›V. In

particular, if x lies on ›V(t), then x1 dt vt(x, t) lies on

›V(t1 dt) for infinitesimal dt. Let us define the entrain-

ment velocity ve as vt 2 u, where u is the fluid velocity.

Like vt, ve is defined only on ›V. Substituting vt 5 u1 ve
into Eq. (1) and using Gauss’s theorem, we get

›

›t

ð
V(t)

d3x f 5

ð
V(t)

d3x

�
›

›t
f 1$ � ( fu)

�

1

ð
›V(t)

d2x (n̂ �ve)f . (2)

Setting f 5 rw in Eq. (2), using themomentum equation,

and then subtracting a hydrostatic base state from the

pressure and density, we get
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where p0 is the pressure perturbation (i.e., the deviation

from the hydrostatic base state) and the buoyancy

b equals2r0g/r, where r0 is the density perturbation. The
left-hand side is the rate of change of the thermal’s mo-

mentum. This is equal to the sumof the three terms on the

right-hand side: the pressure perturbation gradient force,

the buoyancy, and the entrainment (n̂ � ve . 0) and de-

trainment (n̂ � ve , 0) of momentum. We have neglected

molecular viscosity here as its direct effect on the mo-

mentum budget of cloud thermals is wholly insignificant.

The slippery-thermal hypothesis is that the dominant

balance in Eq. (3) is between terms 1 and 3, as indicated.

The sticky-thermal hypothesis is that the dominant balance

is between terms 2 and 3, as indicated. Evidence from

large-eddy simulations indicates that the fourth term—

acceleration by entrainment anddetrainment—is far smaller

than originally thought (Dawe andAustin 2011) andmay be

practically negligible (de Roode et al. 2012; Sherwood et al.

2013). Therefore, the question of whether mature cloud

thermals are slippery or stickyboils down to a questionof the

magnitude of form drag and wave drag, as manifested in the

pressure perturbation gradient force (term 2 above).

As a brief aside, it is worth emphasizing a simple, but

important, point. The retarding force on a blob of fluid

moving in the ẑ direction is equal to the integral of2p0n̂ � ẑ
over the surface of the blob, where p0 is the pressure per-

turbation, n̂ points normal to the surface outward, and both

ẑ and n̂ are unit vectors. Writing this as the surface integral

of n̂ � (2p0ẑ) and using Gauss’s theorem, we see that this

can be written as the integral of the 2›p0/›z over the vol-

ume of the blob. Therefore, term 2 in Eq. (3) is the drag

force, as claimed. One could argue that a piece of2›p0/›z
force should be thought of as contributing a virtual mass to

an accelerating blob of air, giving rise to an effective inertia

" "

# #
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equal to 3/2 times themass of the blob in the case of a sphere

(Batchelor 2005; Romps and Kuang 2010) and an infinite

effective inertia in the case of an infinite, horizontal slab

(giving rise to hydrostatic balance even if the slab is

buoyant). This piece of the pressure perturbation force,

which exists when the blob of fluid is accelerating even if it

is momentarily motionless, cannot be described by a drag

law of the form Fdrag 5 (1/2)cdAw
2. Nevertheless, we will

not attempt any semantic distinction between effective in-

ertia and the other sources of drag. Instead, we will simply

refer to the volume integral of 2›p0/›z as the drag; this

terminology is particularly appropriate in this study since

the cloud thermals areobserved to risewithout acceleration.

To assess the magnitude of the drag on cloud thermals,

we study output from a high-resolution (100-m grid spac-

ing) large-eddy simulation of radiative–convective equi-

librium (RCE) over a 300-K ocean surface (section 2). An

objective tracking algorithm is used to track cloud tops,

and the thermals underneath those tops are identified

from their azimuthally averaged streamfunctions (section

3). This produces 4852 snapshots of cloud thermals (of 715

unique cloud thermals), which reveal the dominant role

for drag, supporting the sticky-thermal hypothesis (section

4). The results are then briefly summarized (section 5).

2. The large-eddy simulation

Simulationswere run toRCEwithDasAtmosphärische
Modell (DAM; Romps 2008) on a square doubly peri-

odic domain with a width of 32 km and a model top at

30 km. The time step adjusts automatically to satisfy the

Courant–Friedrichs–Lewy (CFL) condition. The lower

boundary was specified to be an ocean surface with a

fixed temperature of 300K, and surface fluxes were

calculated using a bulk formula. Both shortwave and

longwave radiation were calculated interactively using

the RapidRadiative TransferModel (Clough et al. 2005;

Iacono et al. 2008), and the top-of-atmosphere insola-

tion was specified to be a constant diurnal average for

the equator on 1 January.

A simulation with a 500-m horizontal spacing (and a

vertical spacing of 50m below 600m and 500m above

5km) was started from an RCE sounding and run for

2 days to guarantee a fully convectingRCE state. The state

at the end of that simulation was then interpolated to a

grid with the same domain size (36km3 36km3 30km)

but with a 100-m horizontal spacing (and a vertical spacing

of 50m below 600m and 100m between 1100m and

17km). This was run for 20h to ensure that the RCE state

had adjusted to the new grid spacing. The last hourwas run

with a time step of 0.25 s (explained below) and with

snapshots saved everyminute (for a total of 60 snapshots).

This setup is similar to that used by Romps and Kuang

(2010) and Romps (2011), and it produces a similar state

of deep convective RCE. Figure 1 shows various profiles

from the simulation, starting with the virtual potential

temperature uy . Relative humidity is calculated with

respect to liquid for T$ 273:16K and with respect to ice

for T, 273:16K. The cloud fraction is defined as the

fraction of area occupied by a mass fraction of cloud liquid

plus cloud ice greater than 1025. The total convective mass

flux is calculated from the three-dimensional snapshots as

the average of rwA, in which A5 1 wherever vertical ve-

locity exceeds 1ms21 and the mass fraction of cloud liquid

plus cloud ice exceeds 1025, and A5 0 elsewhere. The

convective mass flux of ‘‘good’’ thermals is discussed in the

next section.

3. Tracking thermals

For each three-dimensional snapshot, cloud tops are

identified as a grid point at the local top (highest point

within 6500m in x and y) of ascending cloudy regions.

Cloud tops are then connected in time to build up

FIG. 1. Profiles of virtual potential temperature, relative humidity (with respect to liquid for

T$ 273:16K and with respect to ice for T, 273:16K), cloud fraction (fraction of area occupied by

a mass fraction of cloud liquid plus cloud ice greater than 1025), the total convective mass flux (the

averageof rwA, whereA is an indicator function taking the valueof 1where vertical velocity exceeds

1m s21 and themass fractionof cloud liquid plus cloud ice exceeds 1025, andA is zero otherwise),

and the convective mass flux of the good thermals identified by the algorithm of section 3.
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sequences of cloud-top trajectories. Although this pro-

cedure may be straightforward to implement by eye, we

do not attempt that here. Instead, we have built a set of

objective criteria and then written a piece of software to

automatically identify cloud tops and connect them in

time. This algorithm, described in the appendix, iden-

tifies 4852 cloud tops (715 unique cloud sequences) from

the 1 h of LES output. On average, a cloud sequence

follows a cloud top for 6min. For each cloud top, an

azimuthally averaged map is made for each prognostic

variable around a vertical axis that passes through the

cloud top. These two-dimensional r–z maps, along with

information on how they are connected in time, consti-

tute the data used in this study.

Of course, the cloud top is just the tip of the iceberg, so

to speak. Underneath lies the cloud thermal that drives

the cloud-top ascent. The procedure for identifying the

thermal’s outline is depicted in Fig. 2. First, the cloud-

top vertical velocity wtop is calculated using adjacent

cloud-top positions in the cloud sequence. Next, a

streamfunction c is defined in the r–z coordinates using

the azimuthal average of r(w2wtop),

c(r, z)5

ðr
0
dr02pr0r(w2wtop) .

Since the anelastic continuity equation is

›z(rw)1
1

r
›r(rru)5 0,

where u is the radial component of velocity, c is related

to u and w by

›rc5 2prr(w2wtop) and (4)

2›zc5 2prru , (5)

where 2prr(w2wtop) is themass flux (kgm21 s21) in the z

direction (in the thermal’s reference frame) and 2prru is

the mass flux (kgm21 s21) in the r direction. Finally, the

c5 0 streamline is chosen as the boundary of the thermal.

This choice ismotivated by two facts: 1) there is no netmass

flux across that boundary (net mass flux is zero across a

streamline), and 2) the net vertical mass flux within the

c5 0 contour at each height is zero in the cloud top’s ref-

erence frame (or, in other words, the mean vertical velocity

in the Earth’s reference frame is equal to wtop). This

streamline definition of the boundary may be thought of

as a generalization of the spherical approach taken by

Sherwood et al. (2013). For Hill’s vortex, which is spherical,

both approaches would identify the correct boundary, but

our streamline approach has the advantage of being able to

identify theboundaries of vortex rings that are not spherical.

We refer to the region c. 0 that is contiguous with

the cloud top as the thermal’s mask. Themask is deemed

‘‘bad’’ and not used in subsequent analyses if the top of

the mask slopes upward with increasing r, if the mask

forks with increasing radius (i.e., if, at constant radius,

c flips sign with height more than two times), if the mask

reaches higher than the cloud top, if the mask reaches

to a radius greater than 2km, or if the mask extends

more than 3km below the cloud top. Of the 4852 unique

cloud tops that are elements of cloud sequences, one

quarter of those (1224 cloud tops) have well-behaved

(i.e., good) streamfunction masks by these criteria.

The right panel in Fig. 1 shows the mass flux of the

good thermals. For a height interval [z, z1 dz], this is

calculated as the sum of vertical momenta (of all ther-

mals instantaneously observed in the height interval)

divided by dz, the number of snapshots, and the area of

the simulation domain. Given the fact that we are

tracking cloud thermals only when their tops are rising

through clear air, and using several other restrictive

criteria to define good thermals to simplify the analysis,

it is no surprise that the mass flux of good thermals is a

small fraction of the total convective mass flux (to be

precise, the height-integrated good-thermal mass flux is

3% of the height-integrated total mass flux). Neverthe-

less, the profile of good-thermal mass flux shows that the

cloud-tracking algorithm is sampling convection through-

out the depth of the troposphere (aside froman intentional

avoidance of very shallow thermals).

4. Results

First, we perform a sanity check of the data by com-

paring the mean Eulerian w inside a thermal with its

FIG. 2. A sketch of the process used to identify a thermal’s

boundary. For a cloud top in a cloud sequence, wtop is calculated as

the displacement per time of its height at adjacent times. The quantity

r(w2wtop) is then averaged azimuthally around the vertical axis that

passes through the cloud top, and the thermal boundary is defined as

the c5 0 streamline in the r–z plane. When rotated around the r5 0

axis, the resulting two-dimensional surface defines the boundary of

the thermal in the original three-dimensional space.

AUGUST 2015 ROMPS AND CHARN 2893



Lagrangian wtop. Whenever we refer to the ‘‘mean’’ of

some quantity X in a thermal, this is calculated asð
mask

dr dz 2prXð
mask

dr dz 2pr

,

where the factor r in the two integrals makes this

equal to the volume-weighted average in three di-

mensions. By definition of the thermal mask, the mean

w should be nearly identical to wtop. The only de-

viations should come from the coarseness of the grid

(the uncertainty in the location of the c5 0 streamline is

roughly equal to the grid spacing) and the small varia-

tions in r over the thermal. Figure 3 plots the mean w

againstwtop for all thermals with goodmasks. The points

fall on the 1-to-1 line with a coefficient of determination

R2 of 0.98.

With confidence in the procedure for identifying

thermals, we can now proceed to examine the properties

of these thermals in detail. The following subsections

discuss the thermal structure, the momentum budget,

and the internal circulation of the cloud thermals.

a. Thermal structure

Because of the discrete nature of the 100-m grid, 138

of the 1224 thermals with good masks have a volume

exactly equal to the median volume. These thermals

have a volume equal to a sphere with a diameter of

560m. Figure 4 shows various mean properties of these

median-volumed thermals (cloud condensate, vertical

velocity, streamfunction, pressure perturbation, pres-

sure perturbation gradient acceleration, and buoyancy).

The cloud condensate is located just below the top of

the cloud top, as expected. The vertical velocity has a

maximum underneath the cloud top and weakly nega-

tive values at the periphery of the thermal, consistent

with previous large-eddy simulations (Heus and Jonker

2008; Glenn and Krueger 2014). For the streamfunction,

only positive values are plotted here; the negative values

outside the thermal would saturate the color bar if

plotted. By the procedure outlined in section 3, the

thermal is identified as the region with a positive

streamfunction. Therefore, the shape of the mean

thermal can be identified here as the region with any red

or pink color.

The pressure perturbation has a dipole structure with

high pressure at and above the cloud top and a larger

region of low pressure underneath the cloud top. If the

perturbations of pressure and density were in hydro-

static balance, then the pressure perturbation gradient

acceleration and the buoyancy would be mirror images

of each other. Of course, cloud thermals are not hy-

drostatic, so this is not the case. The core of the thermal

is positively buoyant (with the most buoyant air just

below the cloud top), and that buoyant core is sur-

rounded by an egg-shaped shell of negative buoyancy. In

contrast, the pressure perturbation gradient accelera-

tion resembles a sandwich with a wide and flat region of

downward acceleration capped above and below by

upward acceleration.

Returning now to all 1224 thermals with good masks,

Fig. 5 plots the thermal-mean virtual temperature

anomaly against the thermal-mean temperature anom-

aly. Here, virtual temperature is defined to include the

loading by condensates. The virtual temperature anom-

aly DTy is related to the buoyancy b, the density pertur-

bation r0, the temperature anomaly DT, the water vapor

mass fraction anomaly Dqy , and the condensate mass

fraction anomaly Dqc by

DTy 5
Ty

g
b52

Ty

r
r0’DT1T

�
Ry

Ra

2 1

�
Dqy 2TDqc .

The average temperature anomaly is 0.6K and the av-

erage virtual temperature anomaly (accounting for the

virtual effect of both water vapor and condensates) is

0.4K. For thermals with positive buoyancy, the re-

lationship is approximated fairly well by DTy ’ 0:7DT.
Many in situ observations of cloud temperatures are

FIG. 3. A plot of the thermals’ mean (three-dimensional volume

weighted) Eulerian vertical velocity against their Lagrangian

cloud-top vertical velocity. The fact that these points fall on a 1-to-1

line (with an R2 of 0.98) serves as a sanity check of the cloud

masking procedure.
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reported as an anomaly of unloaded virtual temperature

Tunloaded
y 5T[11 (Ry/Ra 2 1)qy]. To compare with those

studies, we note that the mean unloaded virtual tem-

perature anomaly (not shown in Fig. 5) is 0.8K. There-

fore, the mean buoyancy of thermals (10.4K) stems

from the following combination of temperature anom-

aly, water vapor anomaly, and condensate anomaly:

(Ty/g)b
zfflfflfflffl}|fflfflfflffl{10:4K

’ DT
z}|{10:6K

1T(Ry/Ra 2 1)Dqy

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{10:2K

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
10:8K

2TDqc

zfflfflfflffl}|fflfflfflffl{20:4K

.

These numbers match well with the buoyancies calcu-

lated from in situ observations of temperature and

condensate loading within maritime tropical updrafts.

Mean unloaded virtual temperature anomalies for

convective updrafts have been reported as 0.55, 0.5–0.7,

and 0.4–0.6K over the western Pacific Ocean during the

TaiwanAreaMesoscaleExperiment (TAMEX; Jorgensen

and LeMone 1989), the Equatorial Mesoscale Experiment

(EMEX; Lucas et al. 1994), and the Tropical Ocean and

Global Atmosphere Coupled Ocean–Atmosphere Re-

sponse Experiment (TOGA COARE; Wei et al. 1998),

respectively. Mean buoyancies (reported as loaded virtual

temperature anomalies) in maritime updrafts have been

found to be approximately 0.5K during the GARP At-

lantic Tropical Experiment (GATE; Lawson and Cooper

FIG. 4. For the 138 thermals with themedian volume, the average r–zmaps of cloud condensate, vertical velocity, streamfunction, pressure

perturbation, pressure perturbation gradient acceleration, and buoyancy.
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1990) and 0.2–0.3K during TOGA COARE (Wei

et al. 1998).

b. Momentum budget

Before we attempt to diagnose the momentum bud-

get, it is useful to first look at the cloud-top trajectories.

For each cloud sequence, the time series of cloud-top

displacement is plotted as a thin black line in Fig. 6.

When the streamfunction mask is bad, the trajectory is

plotted with the cloud-top heights at those times

omitted; this choice is made to be as consistent as

possible with the parcel trajectories described below,

which can only use data from good masks. Although

they are difficult to see on this busy plot, the trajecto-

ries resemble a splay of straight lines. The average of all

of these time series is shown as the thick black line,

which is plotted up to the time when the number of thin

black lines drops below 5. It, too, is a straight line, in-

dicating the absence of any significant acceleration or

deceleration of these thermals. Recall that none of the

conditions used to select cloud tops had anything to do

with the stage of the cloud’s life cycle; therefore, the

linearity of these trajectories is truly remarkable. This

linearity strongly suggests a balance of forces, which

would cause the thermals to ascend with a terminal

velocity.

To check this balance, we calculate theoretical time

series of cloud-top heights using the thermodynamic

variables inside the thermal masks. In particular, we

integrate Eq. (3) twice to give height, but using only the

second term on the right-hand side (buoyancy only; blue

lines), or only the first term on the right-hand side

(pressure perturbation gradient acceleration only; red

lines), or the sum of the first two terms on the right-hand

side (buoyancy plus pressure perturbation gradient ac-

celeration; purple lines). The thin blue, red, and purple

lines show the trajectories calculated for individual

cloud sequences. The thick blue, red, and purple lines

show the respective means up until when the number of

thin lines drops below 5. Clearly, buoyancy alone (blue

lines) would cause the thermals to accelerate upward

much more quickly than observed. Similarly, the pres-

sure perturbation alone (red lines) would cause the

thermals to rapidly decelerate and descend, which is in

stark contrast to the observed ascent. But, by combining

these two terms (purple lines), we closely replicate the

observed ascent. This demonstrates that the dominant

balance in the momentum budget is between buoyancy

and drag; cloud thermals are sticky. Note that this suc-

cess is achieved despite our neglect of the entrainment–

detrainment term. This agrees with previous findings

that the entrainment drag is weak (Dawe and Austin

2011; de Roode et al. 2012; Sherwood et al. 2013).

To demonstrate this balance in another way, Fig. 7

plots the thermal-mean pressure perturbation gradient

FIG. 5. A scatterplot of DTy vs DT for the 1224 thermals with

good masks. The marginal histograms show the distributions of

(top) DT and (right) DTy .

FIG. 6. Actual and theoretical cloud-top trajectories. The thin

black lines are the time series of actual cloud-top heights for in-

dividual cloud sequences. The thin blue, red, and purple lines

show the theoretical cloud-top trajectories using only terms b,

2(1/r)›p0/›z, and b2 (1/r)›p0/›z on the right-hand side of Eq. (3),

respectively. The thick black, blue, red, and purple lines are the

averages of the respective thin lines.
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acceleration against the thermal-mean buoyancy. Here,

the mean b values from the 1224 thermals with good

masks are divided into 20 quantiles, each containing 56

thermal snapshots. For each of those quantiles, a circle is

plotted at the average b and average (1/r)›p0/›z. To
good approximation, these points fall on the 1-to-1 line,

indicating that the buoyancy is largely canceled by the

pressure perturbation gradient force; in other words,

buoyancy and drag cancel. The drag deviates from the

1-to-1 line most significantly for values of b near zero.

This is caused by a bias in our sampling: we are col-

lecting only rising thermals, and doing so regardless of

their buoyancy. Thermals will have a drag acting op-

posite their motion, which means that all of these rising

thermals will have a positive ›p0/›z even though some

of their buoyancies may be negative.

How does this observed drag relate to the usual drag

law? To find out, we plot the pressure perturbation drag

against (1/2)Aw2
top, where the thermal’s area A is cal-

culated from its volume V assuming a spherical shape;

that is, A5pR2, where R5 (3V/4p)1/3 (Fig. 8). As in

Fig. 7, the scatter is reduced by averaging over 20

quantiles of (1/2)Aw2
top. The resulting data fall close to a

straight line with a slope of 0.6. This tells us that the

standard drag law applies,

2

ð
V
d3x

1

r

›p0

›z
5

1

2
cdAw2

top ,

with a drag coefficient of cd 5 0:6. This value of cd is not

far from the value measured for solid spheres moving

through a fluid. The highest Reynolds number (Re) for

which the drag on a solid sphere has been measured is

107. At that Reynolds number, the drag coefficient for a

sphere is 0.2 and rising with Re (Blevins 1992). Bear in

mind that a cloud thermal is rising with a Reynolds

number on the order of 108–109, although the effective

Reynolds number of this LES is significantly less. And,

unlike the typical sphere-in-flow laboratory experiment,

the thermals simulated here are rising through a strati-

fied fluid, which leads to wave drag. Therefore, the value

of cd 5 0:6 is certainly plausible. Note that 0.6 is larger

than the value of 0.2 assumed in the parcel model of

Romps and Kuang (2010). It is, of course, also larger

than the value of zero used by Sherwood et al. (2013)

and others (e.g., Nie and Kuang 2012).

It is important to note that care must be taken to

extract the correct pressure field from the large-eddy

simulation. DAM uses a split-time scheme in which

acoustic modes are integrated with a small, but in-

expensive, acoustic time step, and the rest of the dy-

namics is integrated with a large time step that is

advanced using a third-order Runge–Kutta scheme

(Romps 2008). The pressure field that is saved to the

output is the pressure at the end of the final Runge–

Kutta step. For a large time step that is too large, there

are many intervening acoustic steps and the pressure

FIG. 7. Drag vs buoyancy for the thermals with goodmasks. Each

circle represents an average of 56 thermals from a 5% quantile of

thermal-mean buoyancy.

FIG. 8. Actual drag vs the drag-law prediction with cd 5 1. The

slope of the best-fit line gives the actual drag coefficient, which is

cd 5 0:6 in this case.
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field at the end of the large time step may not be rep-

resentative of the mean pressure field experienced

during the large time step. This difference manifests

itself in a dependence of the inferred cd on the length of

the large time step. This is shown in Fig. 9, where the cd
calculated from the LES has not converged until a time

step of &1 s is used. As a result, all of the results

reported here are from the simulation using a 0.25-s

time step.

c. Internal circulation

The sticky behavior found here (i.e., cd 5 0:6) is quite

dissimilar from Hill’s vortex, which experiences zero

drag. We can see the source of this difference by

comparing a composite thermal for the LES side by

side with Hill’s vortex. For this purpose, we average

together the r–z maps of all thermals with good masks

that have volumes in between the 90th and 95th per-

centiles; this leads to an averaging of 65 thermals with a

mean volume equal to a sphere with a diameter of

920m. These high percentiles of volume are chosen to

give a relatively high-resolution view of the circulation.

Figure 10 plots the mean of these thermals on the left-

hand side next to Hill’s vortex (scaled to the same size

and velocity) on the right-hand side. Contours repre-

sent streamlines ranging from 250 to 50Mg s21 in in-

crements of 10Mg s21. The c5 0 contours are the

largest closed streamlines plus the streamline at r5 0.

Colors represent the perturbation pressure; the same

scale is used for both panels.

The streamfunction for the Hill’s vortex is

c5

8>><
>>:

3p

2
wtopr

2 2
3p

2
wtop

r2

a2
(z21 r2) , z21 r2, a2

pwtopr
2a3(r21 z2)23/2 2pwtopr

2 , z21 r2$ a2
,

(6)

where a is the radius of the c5 0 contour. This definition

of the streamfunction differs from the most commonly

reported versions by a factor of 2p to ensure that this c

satisfies Eqs. (4) and (5). The pressure perturbation for

Hill’s vortex is

p5

8>>>><
>>>>:

2
w2
top

8a4
[5a42 9r41 9z41 9a2(r2 2 2z2)] , z2 1 r2, a2

2
w2
topa

3

8(r21 z2)4
[a3(r21 4z2)1 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 1 z2

p
(r42 r2z22 2z4)] , z21 r2$ a2

. (7)

The pointy noses on the contours at r5 0 (on the top of

the cloud thermal and on the bottom ofHill’s vortex) are

artifacts of plotting contours on this coarse grid.

Note that the circulations are quite similar between

the two. The contours in the cloud thermal are expected

to be a bit washed out as a result of having averaged over

65 different thermals, all with slightly different shapes

and sizes. Therefore, we should not read too much into

the differences in the contours between the mean cloud

thermal andHill’s vortex; to the contrary, the agreement

between the two circulations is quite remarkable.

With its broader features, the pressure field is less

affected by the averaging. Note that the thermal has an

obvious fore–aft pressure gradient, which Hill’s vortex

does not have. This dipole distribution of pressure in the

cloud thermal is real and visible in individual cloud

thermals. It differs markedly from the tripole distribu-

tion of pressure—with fore–aft symmetry—in Hill’s

vortex. It is this lack of fore–aft symmetry that causes the

drag on the cloud thermals.

What breaks the fore–aft symmetry in cloud thermals?

One could certainly point a finger at turbulence: cloud

FIG. 9. Care must be taken when extracting a pressure field from

a large-eddy simulation with split-time integration. This plot of

inferred drag coefficient vs the LES large time step shows con-

vergence for time steps &1 s.
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thermals trail a turbulent, cloudy wake, which is dis-

tinctly different in character from the laminar, clear air

above it. But, even in the absence of turbulence, it is

impossible for a buoyant cloud thermal to have both a

symmetric circulation and a symmetric pressure distri-

bution like Hill’s vortex. The reason is buoyancy. The

vertical acceleration is given by2(1/r)›p0/›z1 b, where

p0 is the pressure perturbation and b is the buoyancy. For
both w and p0 to have fore–aft symmetry, b would need

to have fore–aft antisymmetry, but this is not possible

for a cloud thermal with net positive buoyancy.

Finally, let us compare the ratio of cloud-top speed

wtop to cloud-core speed wcore for cloud thermals and

Hill’s vortex. Figure 11 plots wcore against wtop for all

1224 thermals with good masks. Here,wcore is calculated

as the maximum w within the thermal at r5 0. The best-

fit slope is calculated using total least squares regression

with a zero intercept. We see that wcore ’ 1:8wtop. This

will be a small underestimate of the maximum velocity

in the thermal as a result of themaximum sometimes not

being directly underneath the top of the cloud and,

therefore, getting averaged down in the azimuthal av-

erage. We can conclude that a rough rule of thumb is

that the core velocity is twice the cloud-top velocity,

which is not far from the ratio of 2.5 in Hill’s vortex.

5. Summary

In summary, we have run an hour-long large-eddy

simulation of maritime, tropical, deep convection and

have automatically tracked 4852 cloud tops in that

simulation. Azimuthally averaging around a vertical axis

through the cloud top, we use the zero streamline in the

cloud top’s reference frame to define the boundary of

the cloud thermal (Fig. 2). These cloud thermals have

unloaded virtual temperature anomalies and net buoy-

ancies (Fig. 5) that are consistent with in situ measure-

ments of convection over tropical oceans. The cloud

tops are found to ascend with nearly constant vertical

velocity, suggestive of a terminal rise speed. This con-

clusion is bolstered by the finding that the dominant

FIG. 10. (left) An average of 65 thermals with volumes in the 90th–95th percentiles. Contours show the stream-

function with an interval of 10Mg s21 ranging from250 to 50Mg s21. Colors show the perturbation pressure. (right)

As in (left), but for Hill’s vortex scaled to the same size and speed.

FIG. 11. Maximum Eulerian cloud-core speed wcore vs Lagrang-

ian cloud-top speedwtop for all 1224 thermals with goodmasks. The

best-fit slope iswcore 5 1:8wtop. For reference, a 1-to-1 line is shown,

as well as the relationship for Hill’s vortex, which iswcore 5 2:5wtop.
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balance in the thermals’ vertical momentum equation is

between buoyancy and drag (Figs. 6 and 7). The stan-

dard drag law predicts this drag force well using a drag

coefficient of cd 5 0:6 (Fig. 8). The zero cd used by

Sherwood et al. (2013), who argued that cloud thermals

experience no drag and, therefore, should be thought of

as slippery, is inconsistent with these results. Instead,

cloud thermals are sticky, ascending with a nearly con-

stant terminal rise speed set by the balance between

buoyancy and drag. A comparison of cloud thermals to

Hill’s vortex shows that Hill’s vortex is drag free thanks

to its fore–aft symmetry—a symmetry that cloud ther-

mals do not have (Fig. 10).
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APPENDIX

Cloud-Tracking Algorithm

The first step is to take the three-dimensional snap-

shots, which are defined on the stretched vertical grid

that is native to the simulations, and linearly interpolate

them to a uniform 100-m vertical spacing. The stretched

grid of the simulations has a spacing of 50m below

600m, a spacing of 100m above 1100m, and a smoothly

transitioned spacing in between. The data on this

stretched grid are interpolated to a uniform 100-m grid

that exactly coincides with the 100-m levels above 1 km,

so as to leave undistorted the data in the majority of the

troposphere.

The data are on an Arakawa C grid with density,

pressure, temperature, and mass fractions at the center

of the grid boxes and velocity components on the faces.

Let us denote the center of a grid box at time slice n by a

4-tuple of integers (i, j, k, n), with i, j, and k representing

the position in number of grid cells east, north, and up,

respectively. Let us denote the centers of faces by frac-

tional positions—for example, (i1 0:5, j, k, n) is the

location of u on the eastern face, (i, j1 0:5, k, n) is the

location of y on the northern face, and (i, j, k1 0:5, n) is

the location ofw on the upper face. We define a grid box

(i, j, k, n) to be a ‘‘cloud-top candidate’’ if and only if

the Eulerian vertical velocity w at (i, j, k2 1:5, n) is

greater than 1ms21 and the hydrometeor mass fraction

(consisting of cloud liquid, ice, rain, snow, and graupel)

at (i, j, k, n) is greater than 1025 kgkg21 and less than or

equal to 1025 kg kg21 at (i, j, k1 1, n). A cloud-top

candidate is defined to be a ‘‘cloud top’’ if and only if

there is no other cloud-top candidate at a larger k

within a square column of 1-km width centered on

(i, j, k, n). A ‘‘cloud’’ is a set of cloud tops defined such

that two cloud tops belong to the same cloud if one is

within a square column of width 1 km centered on the

other. Note that, by definition of a cloud top, all cloud

tops within a single cloud will have the same k.

For a given cloud, the ‘‘cloud peak’’ is defined as the

cloud top (i, j, k, n) that has the largest Eulerian vertical

velocity w at (i, j, k2 0:5, n). In an attempt to attain a

finer precision on the cloud peak’s ‘‘true’’ height, we

linearly interpolate the hydrometeor mass fractions

between (i, j, k, n) and (i, j, k1 1, n) and define the

cloud peak’s height to be the height at which the hy-

drometeor mass fraction equals 1025 kg kg21.

The next step is to track cloud peaks through time. For

each cloud peak at time n, we consider a 1-km-wide

square column centered on that cloud peak and search

for higher cloud peaks at time n1 1 that fall within that

column. If there is more than one that satisfies this cri-

terion, the lowest one (in height) is taken, as it is deemed

more likely to be connected with the peak in the pre-

vious time step. Conversely, if there are multiple peaks

whose square columns share a common peak in the

subsequent step, the highest one is taken, using a similar

reasoning. This process is then repeated for all adjacent

pairs of time steps, and sets of four or more cloud peaks

linked in this way are called a cloud sequence. In other

words, a ‘‘cloud sequence’’ is defined as a set of cloud

peaks (i, j, k, n) such that

1) the numberN of cloud peaks in the set is greater than

or equal to 4;

2) for some integerm, the set contains exactly one cloud

peak for each time n 2 [m1 1, m1N];

3) for each n 2 [m1 1, m1N2 1], the cloud peak in

the set from time n1 1 is the lowest cloud peak at

that time that is located within a 1-km-wide square

column centered on the cloud peak in the set from

time n;

4) for each n 2 [m1 1, m1N2 1], the cloud peak in

the set from time n is the highest cloud peak at that

time that is located within a 1-km-wide square

column centered on the cloud peak in the set from

time n1 1; and

5) this is the largest such set containing these cloud

peaks.

To eliminate outlier clouds that seem to be ascending

too rapidly, two final criteria are imposed. We define a

‘‘cloud-top velocity’’ to be a cloud’s cloud-peak ascent

speed averaged over a 3-min interval (i.e., total vertical
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displacement during that interval, as calculated using

the interpolated heights, divided by 3min). Next, we

define the ‘‘max velocity’’ associated with a cloud top

located at (i, j, k, n) as the maximum Eulerian vertical

velocity w from all points (i0, j0, k0 2 0:5, n) such that

1) (i0, j0, k0 2 0:5, n) is within a square column of width

1 km centered on the cloud top’s location (i, j, k),

2) k0 # k, and

3) every grid box between (i0, j0, k) and (i0, j0, k0) in-

clusive has a hydrometeor mass fraction greater than

1025 kg kg21.

Then, we discard all cloud sequences that have either

1) a cloud-top velocity greater than themaximum of the

cloud-core velocities associated with each of the

cloud peaks during the associated 3-min interval or

2) a coefficient of variation of three adjacent vertical

displacements that exceeds 0.5.
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