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Effective buoyancy at the surface and aloft
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It is shown here that a wide, buoyant parcel of air at the surface accelerates far less rapidly
than it does aloft. In particular, analytical formulae are derived for the effective buoyancy
(i.e. the net vertical acceleration due to parcel buoyancy and environmental response) of
idealized cylinders of diameter D and height H, located in free space and at the surface.
These formulae quantify the decrease of effective buoyancy with increasing aspect ratio
D/H, and show that this effect is more pronounced for surface cylinders, especially when
D/H > 1. We gain intuition for these results by considering the pressure fields generated
by these buoyant parcels, and we test our results with large-eddy simulations. Our formulae
can inform parametrizations of the vertical velocity equation for clouds, and also provide
a quantitative map of the ‘grey zone’ in numerical modelling between hydrostatic and
non-hydrostatic regimes.
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1. Introduction

The Archimedean buoyancy in the anelastic approximation is
given by

B ≡ −g
ρ ′

ρ̄
(1)

where g is the gravitational acceleration, ρ̄(z) is a reference density
profile, and the density ρ is decomposed as ρ = ρ̄ + ρ ′. It is the
driving force behind thermal convection, but is also an incomplete
and somewhat unsatisfactory measure of buoyant acceleration
since, in general, the Lagrangian vertical acceleration dw/dt does
not equal B, even when the atmosphere is initially motionless.
This is because the acceleration of a buoyant parcel necessarily
produces a back-reaction from the environment, which must
move out of the way to accommodate the parcel’s motion. This
back-reaction is given (in the anelastic approximation) by the
gradient of the buoyancy pressure perturbation p′

b, which is
defined as the solution to the Poisson equation∗

−∇2p′
b = −∂z(ρ̄B) (2)

(cf. Markowski and Richardson, 2011, p. 28). The vertical
accelerations B and −(∂zp′

b)/ρ̄ are thus inseparable, which has led
some authors to consider only their combination B − (∂zp′

b)/ρ̄
in their analyses (e.g. Krueger et al., 1996; Xu and Randall, 2001;

∗This equation just says that the divergence of −∇p′
b must cancel the divergence

generated by ρ̄Bẑ, a requirement imposed by anelastic mass continuity.

Davies-Jones, 2003; Torri et al., 2015). Such an approach was
expressly advocated by Doswell and Markowski (2004), who also
argue that B − (∂zp′

b)/ρ̄ is independent of reference density ρ̄,
resolving another deficiency of Eq. (1).

While focusing on B − (∂zp′
b)/ρ̄ is sensible, this quantity,

which we refer to as the ‘effective buoyancy’ β following Davies-
Jones (2003), has been relatively little studied as an object in its
own right. Previous studies and textbook treatments have largely
focused on ∇p′

b (e.g. Yau, 1979; Markowski and Richardson,
2011; Houze, 2014), though there are exceptions which we will
discuss below (Pauluis and Garner, 2006; Nugent and Smith,
2014). Parametrizations of the vertical velocity equation employed
in convection schemes usually strive to account for effective
buoyancy via a ‘virtual mass’ coefficient, but its value is rather
uncertain (de Roode et al., 2012). Finally, there are surface effects
which are significant but rarely quantified. We illustrate these in
Figure 1, which shows x–z cross-sections at y = 0 of B and β for
Gaussian density bubbles of the form

ρ(x) = ρ̄(z) + �ρ exp

{
− r2

R2
−

(
z − zcm

H/2

)2
}

, (3)

with height H = 1000 m, radius R = 1000 m, �ρ =
−ρ̄(zcm)/300 for an approximate temperature anomaly of 1 K,
and bubble centres zcm = 2000, 500, and 0 m.† The ratio of the
maximum of β to the maximum of B is roughly 1/2 for the ‘free’

†The domain set-up and ρ̄(z) for the bubbles is the same as for the large-eddy
simulations discussed in section 5 below, and we compute β numerically as in
Jeevanjee and Romps (2015).

c© 2015 Royal Meteorological Society
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Figure 1. x–z cross-sections at y = 0 of (a,c,e) Archimedean buoyancy B and (b,d,f) effective buoyancy β = B − (∂zp′
b)/ρ̄ (both 10−2 m s−2) for Gaussian bubbles

of the form Eq. (3) with R = 1000 m, H = 1000 m, and centre height zcm of (a,b) 2000 m, (c,d) 500 m, and (e,f) 0 m. Horizontal and vertical dimensions are plotted
to scale, though the vertical axes in (a,b) differ from those of (c–f), and the contour is drawn at the 95th percentile value in each plot. Note the marked difference in
magnitude between B and β, how this difference becomes more pronounced as the bubble moves toward the surface, and how the maximum of β stays a finite height
above the surface even as the maximum of B approaches z = 0.

bubble, and this ratio decreases rapidly as the bubble approaches
the surface. At the surface one can also see that the maxima of β

and B are no longer co-located.
At present, we have little quantitative or even qualitative

understanding of such behaviour. We aim to remedy this by
developing and testing analytical expressions for the effective
buoyancy of fluid parcels near the surface and aloft. We will solve
the Poisson equation for β given in Davies-Jones (2003) (hereafter
DJ03) for idealized density distributions, and employ the closely
related ‘buoyancy pressure’ introduced by Jeevanjee and Romps
(2015, hereafter JR15) to gain intuition for our results.

2. Preliminaries

2.1. The Poisson equation for effective buoyancy

As in JR15, we begin by defining effective buoyancy β as the
Lagrangian vertical acceleration that would result from zeroing
out the wind fields:

β ≡ dw

dt

∣∣∣∣
u=0

. (4)

If one starts with the usual approximation of the anelastic equation
of motion in the absence of viscous and Coriolis forces (Emanuel,
1994, p. 11),

du

dt
= Bẑ − 1

ρ̄
∇p′ ,

where p′ = p − p̄ is the perturbation pressure and p̄ is a
reference pressure profile in hydrostatic balance with ρ̄, then
it is straightforward to show that β = B − (∂zp′

b)/ρ̄, where p′
b

satisfies Eq. (2). If, however, one follows DJ03 and Das (1979)
and defines a locally hydrostatic pressure field

phyd(x, y, z) ≡ g

∫ ∞

z
ρ(x, y, z′) dz′

and corresponding non-hydrostatic pressure field pnh ≡ p − phyd,
then one obtains an alternate form of the anelastic momentum
equation

ρ̄
du

dt
= −∇pnh − ∇hphyd , (5)

where ∇h ≡ ∂xx̂ + ∂yŷ. It is then straightforward to apply the
definition (4) to obtain the following simple Poisson equation for
β, due to DJ03:

−∇2(ρ̄β) = g∇2
hρ. (6)

(Here, ∇2
h ≡ ∂2

x + ∂2
y , and the difference between ∇2

h and ∇2 is
the source of all the interesting physics that follows.) Neglecting
vertical variations in ρ̄ (since the scale of such variations is larger
than the density anomalies we will consider) and noting that
∇2

hρ = ∇2
hρ ′, we obtain an even simpler form,

−∇2β = −∇2
hB. (7)

This is the Poisson equation for β that we will use in this article.

2.2. Effective buoyancy and the buoyancy pressure

Though Eq. (7) is all we require to obtain analytical expressions
for β, getting intuition for what these expressions tell us will
require us to consider the buoyancy pressure pβ , first introduced
in JR15. Analogous to the definition (4), pβ is defined as the
non-hydrostatic pressure that would result from zeroing out the
wind fields:

pβ ≡ pnh

∣∣
u=0

.

Taking the divergence of Eq. (5), invoking anelastic mass
continuity, and setting u = 0 yields the Poisson equation

−∇2pβ = ∇2
hphyd . (8)

This equation just says that the divergence of −∇pβ must
cancel out any divergence produced by the horizontal hydrostatic

c© 2015 Royal Meteorological Society Q. J. R. Meteorol. Soc. 142: 811–820 (2016)
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pressure gradient −∇hphyd. That Eq. (8) is reminiscent of Eqs (6)
and (7) is no accident; applying −∂z to both sides of Eq. (8)
yields −∇2(−∂zpβ) = g∇2

hρ, and it follows from Eq. (5) that the
boundary conditions of −∂zpβ are identical to that of ρ̄β, so we
conclude that

ρ̄β = −∂zpβ . (9)

Thus, β is essentially the vertical component of the pressure
gradient −∇pβ which arises to compensate for hydrostatic
pressure forces. Considering pβ will give us a picture of the
full 3D circulation resulting from parcel buoyancy, which will
facilitate intuition for β.

2.3. Back-of-the-envelope estimate of effective buoyancy

We will be interested in solutions of Eq. (7) for parcels of
characteristic height H and horizontal scale D. In terms of these
parameters, we can roughly estimate ∂2

r ∼ 1/D2 (here and below,

r ≡ √
x2 + y2 is our cylindrical radial coordinate) and ∂2

z ∼ 1/H2

and plug into Eq. (7) to obtain

β = B

1 + D2/H2
. (10)

This suggests that |β| < |B|, as we expect, and that the
proportionality factor depends quadratically on a parcel’s aspect
ratio D/H. The exact solutions of Eq. (7) for isolated cylindrical
density anomalies, which we will present below, confirm this.

Before proceeding to that analysis, let us use Eq. (10) to
re-do the usual linear perturbation analysis of a parcel in a
stratified environment with potential temperature profile θ(z)
and Brunt–Väisälä frequency N = √

g d(ln θ)/dz . In the linear
regime with no background flow, there is no ‘inertial’ or ‘dynamic’
pressure stemming from the nonlinear advection term in the
momentum equation, and so dw/dt = β (Jeevanjee and Romps,
2015). Applying this to a small displacement δz, and using Eq. (10),
we then have

d2δz

dt2
= − N2

1 + D2/H2
δz.

Letting k ≡ 1/D and m ≡ 1/H, this implies that the parcel will
oscillate with angular frequency

ω = N√
1 + D2/H2

= Nk√
k2 + m2

,

which is just the usual expression for the frequency of a gravity
wave with horizontal and vertical wavenumbers k and m. Thus, the
reduction of the gravity-wave frequency from the Brunt–Väisälä
value can be seen as just the effect of effective buoyancy. That
Eq. (10) gives the exact right answer for ω is no accident, as
Eq. (10) is itself exact for gravity waves, as can be checked by
plugging in oscillating fields B, β ∼ exp{i(kx + mz − ωt)} into
Eq. (7).

Despite the applicability of Eq. (10) in the gravity-wave context,
and the fact that it captures the reduction of β relative to B as a
function of a parcel’s aspect ratio, it is just a crude estimate and
does not capture the dependence of β on a parcel’s proximity to
the surface seen in Figure 1. To make further progress, we will
need the exact solutions presented in the next two sections.

3. The free cylinder

We now refine the result (10) for the case of a ‘free’ parcel,
i.e. a density anomaly in an infinite domain without boundary.
The case of a parcel at the surface is treated in the next section.
We proceed by partially solving the Poisson equation (7) for a
uniform cylindrical density anomaly centred around the origin

Free cylinder Surface cylinder

(a) (b)

Figure 2. Illustrations of the buoyancy distributions appearing on the right-hand
side of Eq. (7) for (a) the free cylinder and (b) the surface cylinder. The distribution
is even about z = 0 for the free cylinder, but odd for the surface cylinder, enforcing
a β(0) = 0 boundary condition for the latter.

with Archimedean buoyancy B0, diameter D, and height H. This
is illustrated in Figure 2(a). The buoyancy field thus has the form

B = B0 H
(

D

2
− r

)
H

(
z + H

2

)
H

(
H

2
− z

)
, (11)

where the Heaviside step functions H serve to restrict the density
anomaly to our cylinder. Plugging this into Eq. (7) yields

−∇2β = B0

r
∂r

{
rδ

(
r− D

2

)}
H

(
z+ H

2

)
H

(
H

2
−z

)
, (12)

where δ(r) = ∂rH(r) is the Dirac delta function.
A complete analytical solution of Eq. (12) would be arduous,

if not impossible, but here we seek only the solution for β

on the z-axis, which simplifies the problem considerably. Since
the Green’s function G(x; x′) for the Laplacian ∇2 for a field
with ‘open’ boundary conditions (i.e. a field which vanishes at
infinity) is just 1/(4π |x − x′|), and since we are interested only
in x = (0, 0, z), β(z) on the z-axis is given by

β(z) =
∫

d3x′ G{(0, 0, z); x′} ∇2
hB(x′)

= B0

2

∫ H/2

−H/2
dz′

∫ ∞

0
dr′ ∂r′ {r′δ(r′ − D/2)}√

r′2 + (z − z′)2
.

This double integral can be evaluated using integration by
parts, the definition of the delta function, and trigonometric
substitution. The result is

β(z) =B0

2

{
1 − 2z/H√

D2/H2+(1−2z/H)2

+ 1 + 2z/H√
D2/H2+(1+2z/H)2

}
. (13)

This analytical expression is one of the main results of this article.
The function β(z) is plotted as a function of z/H in Figure 3

for various aspect ratios D/H, which are depicted to scale by pink
boxes. Note that as D/H increases, the maximum of β decreases.
This can be further illustrated by evaluating Eq. (13) at z = 0,
which yields

β(0) = B0√
1 + D2/H2

. (14)

This is plotted as a function of aspect ratio in Figure 4, and
quantifies the effect of aspect ratio on buoyant accelerations: for
D/H = 1, the environmental response offsets the Archimedean
buoyancy by 30%; for D/H = 2, 50%. For small aspect ratios
D/H 
 1, the plot of Eq. (14) in Figure 4 flattens out, so narrow
plumes do not become significantly more buoyant by splitting

c© 2015 Royal Meteorological Society Q. J. R. Meteorol. Soc. 142: 811–820 (2016)
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Figure 3. The curves β(z) (green) from Eq. (13) for free cylinders of aspect ratios D/H (a) 0.2, (b) 1.0, and (c) 5.0. The cylinders themselves are depicted to scale in
pink. As D/H increases, there is a marked decrease in the maximum of β(z), as well as an increase in the vertical scale over which β decays.
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decreases much more rapidly as D/H increases. The thin grey line plots the result
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apart. In this regime we can also Taylor-expand the denominator
in Eq. (14) to first order which yields

β(0) ≈ B0

1 + D2/(2H2)
when D/H 
 1 ,

an expression very similar to Eq. (10). For the opposite, large
aspect-ratio, regime we have the alternate approximation

β(0) ≈ B0
H

D
when D/H � 1 . (15)

We will contrast this expression with its analogue for the surface
cylinder in the next section.

These formulae quantify the decline of effective buoyancy with
aspect ratio. What causes this decline, however? And why does it
take the form Eq. (15) in the large-aspect-ratio limit? To answer
these questions, we turn to the buoyancy pressure pβ introduced
in section 2.2. We must first find pβ(z), which is easily obtained via
Eq. (9) by integrating Eq. (13). Imposing the boundary condition
pβ → 0 as z → ∞ yields

pβ(z) =�phyd

2

{
−

√
D2/H2 + (1 − 2z/H)2

+
√

D2/H2+(1+2z/H)2−2
}

, (16)

where

�phyd ≡ −ρ̄B0H/2 (17)

is the phyd anomaly at the cylinder’s centre. Evaluating Eq. (16) at
z = 0 yields

pβ(0) = −�phyd . (18)

This simple result is key for understanding the free cylinder,
and does not hold for the surface cylinder. To gain intuition
for it, consider a smooth, cylindrical buoyancy distribution (e.g.
a Gaussian bubble as in Figure 1), as depicted schematically in
Figure 5(a); the cylinder of uniform buoyancy given by Eq. (11)
can be seen as a limit of such distributions. Figure 5(a) gives a
heuristic derivation of Eq. (18), as follows.

1. The hydrostatic pressure anomaly �phyd < 0 in the
cylinder drives convergence into the cylinder via −∇hphyd

(blue arrows).
2. This must be balanced by divergence from −∇pβ ,

according to Eq. (8). The z → −z symmetry of Eq. (7)
implies that β at cylinder top and bottom must be equal,
however, so the vertical component of −∇pβ cannot
contribute any divergence (vertical green arrows).

3. The horizontal divergence of −∇pβ must then balance
the convergence from −∇hphyd (horizontal green arrows).
Since this balance occurs over a common length scale D,
we can infer Eq. (18).

Now, a key feature of Eq. (18) is that pβ(0) is independent
of horizontal scale. Why, then, does β decline with increasing
D/H for fixed H? As shown in the Appendix, for large aspect
ratios the normalized field pβ/pβ(0) is a fixed function of x/D,
with negligible H-dependence. In particular, this means that the
height at which pβ decays to a given fraction of itself scales with
D. Thus, β = −(∂zpβ)/ρ̄ must scale as

β ∼ pβ(0)

ρ̄D
. (19)

If we combine this with Eq. (18) and the definition (17) we get

β ∼ −�phyd

ρ̄D
∼ B0

H

D
, (20)

which is just the scaling we found in Eq. (15). Thus, the basic
reason that aspect ratio matters for a free parcel is that the vertical
scale of pβ is a function of the parcel’s horizontal scale D. (This
can also be inferred from Figure 3.) If D increases while H (and
hence pβ(0) = −�phyd) is fixed, a taller column of air must be
moved with a fixed pressure differential, decreasing the gradient
β = (−∂zpβ)/ρ̄.

4. The surface cylinder

We now turn to parcels located at the lower boundary of a
domain, where the vertical velocity w is identically 0 and hence so

c© 2015 Royal Meteorological Society Q. J. R. Meteorol. Soc. 142: 811–820 (2016)
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(a) (b)

Figure 5. Cartoon of the gradients −∇hphyd and −∇pβ and associated divergences for (a) the free cylinder and (b) the surface cylinder. Note that for the free cylinder,
the vertical divergence from −∇zpβ = ρ̄β is 0, so the horizontal convergence from −∇hphyd must be balanced entirely by horizontal divergence from −∇hpβ , which
yields pβ = −�phyd. For the surface cylinder there is a vertical contribution to the divergence since β(0) = 0, and so a smaller value of | − ∇hpβ | (and its divergence)
is sufficient to balance the divergence from −∇hphyd, yielding pβ < −�phyd.
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Figure 6. As Figure 3, but for surface cylinders with β(z) given by Eq. (22). In addition to a decrease in β and increase in vertical scale as D/H increases, the location
zmax (light grey dashed line) of βmax moves upward, with zmax located just above the cylinder for D/H = 5.

is β by Eq. (4). To solve Eq. (7) for a cylinder at the surface
(where the surface is at z = 0), we employ the method of
images (DJ03; Griffiths, 2013). The idea of this technique is
to enforce a β(0) = 0 boundary condition by solving the open
boundary condition problem as in the previous section, but with
an additional ‘image cylinder’ generated by reflecting the original
surface cylinder across the z = 0 plane and switching the sign of
its anomaly (Figure 2(b)). The source term ∇2

hB in Eq. (7) will
then be odd with respect to z, which implies β will be odd too,
ensuring β(0) = 0.

In this case, then, the Poisson equation for β is

−∇2β = − ∇2
hB0 H(R − r)

×{
H(z)H(H−z)−H(−z)H(H+z)

}
. (21)

Integration against the Green’s function as in the previous section
yields the desired formula for β along the z-axis:

β(z) =
B0

2

(
1 − z/H√

D2/4H2 + (1 − z/H)2

+ 2z/H√
D2/4H2+z2/H2

− 1 + z/H√
D2/4H2+(1+z/H)2

)
. (22)

This expression is the other main analytical result of this article.
This β(z) is plotted as function of z/H for various D/H in
Figure 6. Similar to the free cylinder, the overall magnitude of β

decreases with increasing D/H. To analyze this, we estimate the
parcel’s overall effective buoyancy by evaluating β at the centre
of the cylinder, yielding

β(H/2) = 3B0

2

(
1√

1+D2/H2
− 1√

9+D2/H2

)
. (23)

We plot this function against D/H as the dashed line in Figure 4.
Note that this curve is always less than that for the free cylinder,
consistent with Figure 1, and declines much more rapidly with
increasing D/H. In fact, the large-aspect-ratio limit gives

β(0) ≈ 6B0
H3

D3
when D/H � 1 , (24)

which should be compared with the H/D scaling in Eq. (15).
Another noteworthy feature of Figure 6 is that, like the free

cylinder, the vertical scale over which β declines increases as D
increases, but in this case the location zmax of the maximum of
β(z) (light grey dashed line in Figure 6) also changes, and even
appears outside the cylinder for D/H = 5. This may be surprising,
but is consistent with the fact that, for D � H, zmax scales with D
(Appendix).

Why do surface parcels accelerate less than free ones? As in the
previous section, we turn to pβ for insight. Again invoking Eq.
(9), we integrate Eq. (22) with our pβ → 0 as z → ∞ boundary
condition to obtain

pβ(z) = �phyd

2

{
−

√
D2

4H2
+

(
1− z

H

)2

+2

√
D2

4H2
+ z2

H2
−

√
D2

4H2
+

(
1+ z

h

)2
}

. (25)

Taking the D/H � 1 limit in Eq. (25) and evaluating at z = 0
then gives

pβ(0) ≈ −�phyd
H

D

 −�phyd . (26)

This stands in marked contrast to the free cylinder result (18),
and is one of the main ways in which the surface cylinder differs

c© 2015 Royal Meteorological Society Q. J. R. Meteorol. Soc. 142: 811–820 (2016)
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Figure 7. x–z cross-sections at y = 0 of qpurity , along with zcm(t) (black circles) for the D = 1000 m free cylinder at t = (a) 0 min, (b) 2 min, (c) 4 min and (d) 6 min.
Only the middle half of the horizontal domain is shown.

from the free one. We again give a heuristic derivation for a
smooth cylindrical density distribution, shown in Figure 5(b), as
follows:

1. The hydrostatic pressure anomaly �phyd < 0 in the
cylinder drives horizontal convergence into the cylinder
via −∇hphyd (blue arrows).

2. This must again be balanced by divergence from −∇pβ . For
the surface cylinder, however, there is now a contribution
from the vertical component of −∇pβ (vertical green
arrow). This is because the β(0) = 0 boundary condition
at the surface breaks the reflection symmetry about the
horizontal plane passing through the cylinder’s centre.

3. The horizontal component of −∇pβ is thus no longer
required to balance all of the convergence from −∇hphyd

(horizontal green arrows), and so can have a smaller
magnitude | − ∇hpβ | < | − ∇hphyd|. Since these gradients
occur over a common length scale D, we can infer
pβ(0) < −�phyd, as expressed in Eq. (26).

We can now combine the foregoing with our earlier results
to give a heuristic derivation of the scaling in Eq. (24). We have
three scaling laws concerning the effective buoyancy of a surface
parcel when D � H:

1. From Eq. (19), we know that βmax ∼ pβ(0)/(ρ̄D).
2. From Eq. (26), we know that the effect of a non-zero

vertical divergence of −∇pβ , which arises from broken
reflection symmetry, gives pβ(0) ∼ �phydH/D.

3. Assuming a linear increase of β with height from z = 0 to
zmax, the scaling zmax ∼ D then gives β(H/2) ∼ βmaxH/D.

Combining these three scaling laws then gives

β

(
H

2

)
∼ βmax

H

D
by scaling law 3

∼ pβ(0)

ρ̄D

H

D
by scaling law 1

∼ −�phyd

ρ̄D

H2

D2
by scaling law 2

∼ B0
H3

D3
by definition (17) .

Roughly speaking, each of our scaling laws yields a factor of H/D,
combining to give a H3/D3 scaling just as in Eq. (24).

5. LES tests

We now test the dependence of effective buoyancy on parcel‡

aspect ratio and surface proximity by performing large-eddy
simulations (LESs) of the motion of our free and surface cylinders,

‡In this section we will continue to refer to our cylinders as ‘parcels’, even
though the heterogeneity they develop over time violates the strict definition
of a parcel as a homogenous entity.

using Das Atmosphärische Modell (DAM; Romps, 2008). DAM
is fully compressible and relies on implicit LES (Margolin et al.,
2006) for subgrid-scale transport, so no explicit subgrid-scale
turbulence scheme is used. We use a three-dimensional domain
with doubly periodic boundary conditions in the horizontal, and
take a neutrally stratified, dry environment with a temperature
of 300 K at the lower boundary, where w and β are 0. The
neutral stratification and surface temperature, along with an
assumption of hydrostatic balance, are sufficient to determine the
environmental density profile ρ̄(z). For given cylinder parameters
D (which we vary) and H (which we fix at 1000 m), the domain
width and height must be taken large enough to sufficiently
approximate the horizontally infinite and vertically (half) infinite
boundary conditions of the free (surface) cylinders. Since the
scale height of pβ scales with D when D/H > 1 (Appendix),
and since we must leave room for our cylinders to rise, we
take the domain height ztop = max(2D, 6H) for free cylinders
and ztop = max(D, 4H) for surface cylinders. We take the domain
width to be 6.4D. This is sufficient to ensure only small§ differences
between the idealized analytical and finite-domain numerical
profiles of β/B0.

Our density field is

ρ(x) = ρ̄(z) − ρ̄(zcm)

300
for r < D/2, |z−zcm| < H/2,

with ρ = ρ̄(z) everywhere else. The centre heights zcm are ztop/2
for the free cylinder and H/2 for the surface cylinder. The
grid spacings are dx = dy = D/40 and dz = min(dx, H/20). The
adaptive time step is set to a maximum of dz/(10 m s−1) to satisfy
the CFL condition (Durran, 2010) for velocities up to at least
∼ 10 m s−1.

The cylinders are initialized with a purity tracer field qpurity

which is set to 1 inside the cylinder and 0 outside, and is advected
passively by the flow. For each time t, we diagnose the cylinder’s
centre of mass z-coordinate as

zcm(t) ≡
∫ ∫ ∫

d3x z q(x, t) ρ(x, t)∫ ∫ ∫
d3x q(x, t) ρ(x, t)

,

where the integrals are taken over the whole model domain. To
get a sense of how these parcels evolve, the qpurity field, along
with zcm(t), is plotted at 3 min intervals for the D = 1000 m free
cylinder in Figure 7.

Next, we plot the trajectories zcm(t) − zcm(0) for free
and surface cylinders in Figure 8. We take D = 200, 1000, and
5000 m, so that D/H = 1/5, 1, and 5, just as in Figures 3 and
6. Figure 8 shows that the zcm(t) trajectories indeed exhibit the
expected dependence of effective buoyancy on aspect ratio. The
effect of the surface is not noticeable for D/H = 1/5 and 1, but
is noticeable for D/H = 5; this is consistent with Figure 4, and

§More specifically, the difference between the analytical and numerical profiles
of β/B0 never exceeds 0.04, with the relative error in in-parcel acceleration
(the quantity we care about) never exceeding 5% at a given height for a given
case.
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Figure 8. Diagnosed position of cylinder centre-of-mass zcm(t) (open black circles) for our cylindrical density anomalies with H = 1000 m and D = (a,d) 200 m, (b,e)
1000 m, and (c,f) 5000 m, as simulated by LES. The decreased acceleration with increasing aspect ratio is clear, especially when D/H � 1 and for the surface cylinder
in particular. The blue line shows the Archimedean buoyancy estimate zB(t) from Eq. (27), which for the skinny cylinders agrees with the LES at early times, but
cannot capture the initial acceleration of the wider cylinders. The red line shows the effective buoyancy estimate zβ (t) from Eq. (28), which fares better in capturing
the parcel’s initial acceleration for both free and surface cylinders, except for the D/H = 5 cylinders. See the text for further discussion.

suggests that the effect of the surface becomes significant when
D/H � 1.

Figure 8 thus qualitatively confirms the physics presented in
sections 3 and 4. Can the formulae (14) and (23) derived in those
sections be of any quantitative use? And how do they compare
with the naive predictions of the Archimedean buoyancy? Let
us take a first stab at this by focusing on the initial acceleration
of our cylinders. The Archimedean estimate for this is simply
the average initial Archimedean buoyancy Bav (B is not exactly
constant throughout the cylinder, due to small variations in ρ̄(z)),
and so we plot the curve

zB(t) ≡ 0.5Bavt2 (27)

in blue for each panel of Figure 8. For the D/H = 1/5 cylinders,
zB(t) matches zcm(t) quite well for early times (t < 2 to 3 min),
and thus the Archimedean buoyancy is a good approximation to
the initial acceleration of these parcels. As aspect ratio increases,
though, there is a growing discrepancy between the initial
accelerations of zB(t) and zcm(t) which is most pronounced
for the surface cylinder. This is no surprise, though, as Bav is
insensitive to aspect ratio and surface proximity; indeed, the
curves zB(t) are virtually identical for all six cases.

Let us now turn to the effective buoyancy β. By its very
definition (4) and the fact that our simulated atmosphere is
initially motionless, we know that the average βav of β over
the cylinder must equal the initial acceleration of zcm(t). The
question, then, is to what degree the expressions (14) and
(23), which strictly speaking only describe the centre of the
cylinder, approximate βav. To get a sense of this, we plot the

trajectories

zβ(t) ≡ 0.5β0t2, (28)

where β0 is just given by Eqs (14) and (23) for the free and surface
cases, respectively, against the diagnosed zcm(t) in Figure 8. For
D/H = 1/5 the curves zB(t) and zβ(t) are virtually identical, as one
would expect, and both capture the initial acceleration of zcm(t).
For D/H = 1, zβ(t) captures the diagnosed initial acceleration
whereas zB(t) does not. For D/H = 5, zβ(t) underestimates the
initial acceleration quite significantly. This is because our uniform
density anomalies with step function discontinuities feature a β

that actually increases with r up to the cylinder’s edge at r = D/2,
since that is where the singular source for β is located in the
Poisson equations (12) and (21). For D/H � 1, these radial
variations in β are small and so Eqs (14) and (23) are nonetheless
good approximations to the average β, but for D/H > 1 this is no
longer true, and Eqs (14) and (23) underestimate the cylinder’s
average β. This can also be seen in in Figure 9(a,c), where the
curves (Eqs (14) and (23)) are overlain on βav/Bav computed
numerically for free and surface cylinders with H = 1000 m and
various D. In the next section we will come back to this figure,
and discuss whether Eqs (14) and (23) can be of quantitative use
when D/H > 1.

As a final aside, we should comment on the over-prediction of
zcm(t) by zβ(t) at later times (t > 3 min) for the D/H � 1 cases,
where there is actually good initial agreement. Once a parcel
begins to move, it experiences an internal circulation which may
change its shape as well as entrain environmental air (Figure 7),
both of which will reduce its effective buoyancy. Furthermore, we
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Figure 9. Comparison of the analytical expressions Eqs (14) and (23) with numerically diagnosed values of βav/Bav for (a) free and (c) surface cylinders, and (b) free
and (d) surface Gaussian bubbles of the form Eq. (3), with H = 1000 m and various D. Our formulae rather significantly underestimate βav/Bav for large-aspect-ratio
cylinders, but give better agreement for large-aspect-ratio Gaussian bubbles.

expect drag forces to kick in and eventually balance any buoyant
accelerations (Romps and Charn, 2015; Romps and Öktem, 2015),
yielding a terminal velocity rather than continuing acceleration.
Such a balance between buoyancy and drag at later times seems
consistent with the diagnosed zcm(t) in Figure 8, and would also
contribute to an overestimation of zcm(t) by zβ(t).

6. Summary and discussion

We summarize our results as follows:

• The effective buoyancy of a fluid parcel depends on aspect
ratio and surface proximity, as expressed in Eqs (13) and
(22) and depicted in Figure 4.

• These effects can be understood in terms of the buoyancy
pressure pβ , of which β is essentially just the vertical
gradient.

• These effects indeed manifest in parcel motion as simulated
by LES.

Many questions and potential applications remain, of course.
An obvious first question is: what determines the aspect ratio
of real convecting elements in the atmosphere? Our work here
quantifies the well-known advantage that skinny parcels have over
squat parcels in convecting. But a parcel that is too skinny will
likely suffer too much dilution from entrainment to convect very
far, and so the aspect ratio of real clouds is most likely determined
by a balance between effective buoyancy and entrainment. Settling
this question quantitatively, however, would require a more
solid understanding of how entrainment varies with aspect ratio
(de Rooy et al., 2013).

Another obvious follow-up question is: to what extent do
Eqs (14) and (23), which even for our highly idealized uniform
cylinders only capture βav for D/H � 1, apply to real convective
clouds, which have highly heterogenous density distributions and
irregular shapes? Interestingly, if we consider slightly less artifical

density distributions such as Gaussian bubbles of the form (3),
then we no longer get an increase of β with r (Figure 1), and
Eqs (14) and (23) give a better approximation of βav/Bav, as
shown in Figure 9(b,d). Thus, we may hold out some hope that
our analytical expressions apply to more realistic convection.
However, a comparison with density distributions derived from
(say) cloud-resolving simulations would be necessary to confirm
this.

We should note here that Eq. (14) is not the only published
candidate for β as a function of aspect ratio. Recently, Nugent
and Smith (2014) calculated β for a horizontally infinite slab of
height H with sinusoidal density variations in x and y, and found
that for such density distributions

β = B
{

1 − exp (−H/D)
}

, (29)

where D = 2/
√

k2 + l2 is an effective diameter and k, l are the
horizontal wavenumbers of the distribution. This curve is plotted
in Figure 4 in light grey, and matches quite closely the curve of
Eq. (14). Equation (29) can also be obtained by integrating a
uniform buoyancy profile of height H and centre-of-mass height
zcm → ∞ against the Green’s function in Eq. (15) of Pauluis
and Garner (2006). That article also touches upon the effect of
the surface, and emphasizes the application of formulae such as
their Eqs (18) and (21) (analogous to our Eqs (14) and (23)) to
understanding the transition from hydrostatic to non-hydrostatic
regimes in numerical modelling. In this regard, note that Eq. (23)
tells us that a grid-point surface plume of height 1 km in a
‘convection-permitting’ model of horizontal resolution 4 km (the
threshold identified in the recent review by Prein et al. (2015))
should experience a roughly order-of-magnitude reduction in
acceleration from the Archimedean value.

Finally, we note that the basic physics investigated here, namely
the effect of environmental inertia on an accelerating parcel, is
well known in the fluid dynamics literature as the ‘virtual mass’
or ‘induced mass’ effect (e.g. Batchelor, 2000; Falkovich, 2011).
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This effect is usually incorporated into parametrizations of the
vertical velocity equation, which often take the form (de Roode
et al., 2012)

dw

dt
= aB − bεw2, (30)

where a and b are dimensionless; a is often referred to as a
‘virtual mass coefficient’ (e.g. Bretherton et al., 2004), and ε is
an entrainment rate (units m−1). The −εw2 expression captures
the effect of entrainment (mixing) drag, and b accounts for other
types of drag such as form drag and wave drag, all of which are
expected to be proportional to w2. Before relating our results
to such a parametrization, we should re-arrange Eq. (30) as it
is unsatisfactory on two grounds. First, since b multiplies ε, it
introduces a spurious connection between (say) form drag and
entrainment. Second, any force (not just buoyancy) will induce
a back-reaction from the environment, and so the virtual mass
coefficient a should multiply the drag term as well (assuming that
the spatial distribution of buoyancy and drag forces is identical, so
that we may use the same virtual mass coefficient). This suggests
a drag term of the form a{(cdA/2V) + ε}w2, where A is the
projected area of the parcel, V is its volume, and cd is a drag
coefficient representing form and wave drag. Equation (30) can
then be re-written as

1

a

dw

dt
= B −

(
cdA

2V
+ ε

)
w2, (31)

which combined with the definition (4) yields

a = β/B.

Thus, our results (14) and (23) are just highly idealized
calculations of the virtual mass coefficient a. Furthermore, they
show that this coefficient depends on surface proximity.

Other analytical calculations of virtual mass coefficients exist
in the fluid dynamics literature, but are often for foreign objects
such as gas bubbles or solid spheres accelerating through a fluid
(e.g. Batchelor, 2000; Falkovich, 2011). Our case differs from that
treated in textbooks in that the mass we are considering is part
of the fluid, and so may accelerate non-uniformly and develop
an internal circulation (as seen in Figure 7). Mathematically,
the difference is that we have no boundary condition on the
environmental fluid velocity at the parcel’s edge, as there would
be for a solid body. However, it could be of theoretical and perhaps
practical interest to compare our expressions (14) and (23) to
analogous expressions for solid bodies of similar geometries,
such as the results of Brumley et al. (2010). That there may be
some connection is suggested by the special case of a sphere. To
approximate this case we set D = H in Eq. (14), which yields an
acceleration of B0/

√
2 ≈ 0.71B0; this is quite close to the solid-

body value of 2B0/3, typically derived by other means (Falkovich,
2011).

Appendix

The invariance of pβ/pβ(0) in the D/H �1 limit

Consider the free cylinder’s buoyancy distribution, Eq. (11).
Setting x′ = x/D we can write this as

B(x′) = B0 H
(

1

2
− r′

)
H

(
z′ + H

2D

)
H

(
H

2D
− z′

)
.

In the D/H � 1 limit, the product of the last two Heaviside
functions becomes a delta function (H/D)δ(z′), i.e. the cylinder
becomes a horizontal ‘line source’ in the primed coordinates.
Feeding this B field into the definition of phyd and employing
Eqs (17) and (18) yields

−∇′2
(

pβ

pβ(0)

)
= −2H(−z′) ∇′2

h H
(

1

2
− r′

)
. (A1)

This tells us that pβ/pβ(0) is an invariant function of x′, insensitive
to changes in H and D within the D/H � 1 regime. In particular,
we conclude that pβ/pβ(0) will decay along the z-axis to a given
fraction of itself at a fixed z′ = z/D, and hence this ‘scale height’
of pβ scales with D.

Repeating this exercise but for the surface cylinder (or
for a cylinder close to the surface, i.e. zcm 
 D) yields an
expression identical to Eq. (A1), except with the replacement
H(−z′) → δ(z′). In this case, we conclude that both the scale
height as well as the height zmax of maximum β scale with D.
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